Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(1): 45-63, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36151613

RESUMO

Light availability drives vertical canopy gradients in photosynthetic functioning and carbon (C) balance, yet patterns of variability in these gradients remain unclear. We measured light availability, photosynthetic CO2  and light response curves, foliar C, nitrogen (N) and pigment concentrations, and the photochemical reflectance index (PRI) on upper and lower canopy needles of white spruce trees (Picea glauca) at the species' northern and southern range extremes. We combined our photosynthetic data with previously published respiratory data to compare and contrast canopy C balance between latitudinal extremes. We found steep canopy gradients in irradiance, photosynthesis and leaf traits at the southern range limit, but a lack of variation across canopy positions at the northern range limit. Thus, unlike many tree species from tropical to mid-latitude forests, high latitude trees may not require vertical gradients of metabolic activity to optimize photosynthetic C gain. Consequently, accounting for self-shading is less critical for predicting gross primary productivity at northern relative to southern latitudes. Northern trees also had a significantly smaller net positive leaf C balance than southern trees suggesting that, regardless of canopy position, low photosynthetic rates coupled with high respiratory costs may ultimately constrain the northern range limit of this widely distributed boreal species.


Assuntos
Picea
2.
Ecol Appl ; 33(7): e2902, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37345972

RESUMO

Green infrastructure's capacity to mitigate urban environmental problems, like heat island effects and excessive stormwater runoff, is partially governed by its plant community. Traditionally, green infrastructure design has focused on engineered aspects, such as substrate and drainage, rather than on the properties of its living components. Since the functioning of these plant assemblages is controlled by ecophysiological processes that differ by species, the identity and relative abundance of the species used will influence green infrastructure performance. We used trait-based modeling to derive principles for the effective composition of green infrastructure plant assemblages, parameterizing our model using the vegetation and ecophysiological traits of the species within New York City rain gardens. Focusing on two plant traits that influence rain garden performance, leaf surface temperature and stomatal conductance, we simulated the cumulative temperature and transpiration for plant communities of differing species composition and diversity. The outcomes of the model demonstrate that plant species composition, species identity, selection effects, and interspecific complementarity increase green infrastructure performance in much the way biodiversity affects ecosystem functioning in natural systems. More diverse assemblages resulted in more consistent transpiration and surface temperatures, with the former showing a positive, saturating curve as diversity increased. While the dominant factors governing individual species leaf temperature were abiotic, transpiration was more influential at the community level, suggesting that plants within diverse communities may be cooler in aggregate than any individual species on its own. This implies green infrastructure should employ a variety of vegetation; particularly plants with different statures and physical attributes, such as low-growing ground covers, erect herbaceous perennials, and shrubs.


Assuntos
Planejamento de Cidades , Conservação dos Recursos Naturais , Planejamento Ambiental , Jardins , Plantas , Cidades , Conservação dos Recursos Naturais/métodos , Ecossistema , Temperatura Alta , Chuva , Cidade de Nova Iorque , Especificidade da Espécie
3.
Plant Cell Environ ; 45(7): 2078-2092, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35419840

RESUMO

White spruce (Picea glauca) spans a massive range, yet the variability in respiratory physiology and related implications for tree carbon balance at the extremes of this distribution remain as enigmas. Working at both the most northern and southern extents of the distribution range more than 5000 km apart, we measured the short-term temperature response of dark respiration (R/T) at upper and lower canopy positions. R/T curves were fit to both polynomial and thermodynamic models so that model parameters could be compared among locations, canopy positions, and with previously published data. Respiration measured at 25°C (R25 ) was 68% lower at the southern location than at the northern location, resulting in a significantly lower intercept in R/T response in temperate trees. Only at the southern location did upper canopy leaves have a steeper temperature response than lower canopy leaves, likely reflecting canopy gradients in light. At the northern range limit respiration is nearly twice that of the average R25 reported in a global leaf respiration database. We predict that without significant thermal acclimation, respiration will increase with projected end-of-the-century warming and will likely constrain the future range limits of this important boreal species.


Assuntos
Picea , Aclimatação/fisiologia , Folhas de Planta/fisiologia , Respiração , Temperatura , Árvores/fisiologia
4.
Front Plant Sci ; 12: 746464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790212

RESUMO

Arctic Treeline is the transition from the boreal forest to the treeless tundra and may be determined by growing season temperatures. The physiological mechanisms involved in determining the relationship between the physical and biological environment and the location of treeline are not fully understood. In Northern Alaska, we studied the relationship between temperature and leaf respiration in 36 white spruce (Picea glauca) trees, sampling both the upper and lower canopy, to test two research hypotheses. The first hypothesis is that upper canopy leaves, which are more directly coupled to the atmosphere, will experience more challenging environmental conditions and thus have higher respiration rates to facilitate metabolic function. The second hypothesis is that saplings [stems that are 5-10cm DBH (diameter at breast height)] will have higher respiration rates than trees (stems ≥10cm DBH) since saplings represent the transition from seedlings growing in the more favorable aerodynamic boundary layer, to trees which are fully coupled to the atmosphere but of sufficient size to persist. Respiration did not change with canopy position, however respiration at 25°C was 42% higher in saplings compared to trees (3.43±0.19 vs. 2.41±0.14µmolm-2 s-1). Furthermore, there were significant differences in the temperature response of respiration, and seedlings reached their maximum respiration rates at 59°C, more than two degrees higher than trees. Our results demonstrate that the respiratory characteristics of white spruce saplings at treeline impose a significant carbon cost that may contribute to their lack of perseverance beyond treeline. In the absence of thermal acclimation, the rate of leaf respiration could increase by 57% by the end of the century, posing further challenges to the ecology of this massive ecotone.

5.
Front Microbiol ; 10: 2368, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824435

RESUMO

Bioswales and other forms of green infrastructure can be effective means to reduce environmental stresses in urban ecosystems; however, few studies have evaluated the ecology of these systems, or the role that plant selection and microbial assembly play in their function. For the current study, we examined the relationship between plant transpiration rates for five commonly planted herbaceous species in three bioswales in New York City, as well as bioswale soil microbial composition and soil chemistry. Soils were sampled near individual plants, with distinction made between upper (bioswale inlet) and lower slopes (bioswale outlet). We found high variation in transpiration rates across species, and that Nepeta × faassenii was the highest conductor (13.65 mmol H2O m-2s-1), while Panicum virgatum was the lowest conductor (2.67 mmol H2O m-2s-1) (p < 0.001). There was significant variation in percent N of leaves and soil, which did not relate to the higher water conductance in bioswales. Significantly higher C, N, and water content on the high end of bioswale slopes suggest storm water run-off is mostly absorbed on the inlet side. Bacterial and fungal communities were significantly clustered by bioswale and by plant species within each bioswale implying there are micro-environmental controls on the soil microbial composition, and that plant composition matters for microbial assemblages within bioswales. Plants with higher transpiration rates were associated with greater fungal and bacterial diversity at the level of the bioswale and at scale of the individual plant, suggesting a possible link between plant physiological traits and soil microbial communities. These data suggest that the specific plant palette selected for planting bioswales can have deterministic effects on the surrounding microbial communities which may further influence functions such as transpiration and nutrient cycling. These results may have implications for bioswale management to improve urban water quality and reduce stress on sewage systems after storm events by revising plant species palette selection based on the functional consequences of plant-microbial associations in engineered green infrastructure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA