Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 157(18): 184504, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36379802

RESUMO

Establishing the structure-property relationship is an important goal of glassy materials, but it is usually impeded by their disordered structure and non-equilibrium nature. Recent studies have illustrated that secondary (ß) relaxation is closely correlated with several properties in a range of glassy materials. However, it has been challenging to identify the pertinent structural features that govern it. In this work, we show that the so-called polyamorphous transition in metallic glasses offers an opportunity to distinguish the structural length scale of ß relaxation. We find that, while the glass transition temperature and medium-range orders (MROs) change rapidly across the polyamorphous transition, the intensity of ß relaxation and the short-range orders (SROs) evolve in a way similar to those in an ordinary reference glass without polyamorphous transition. Our findings suggest that the MRO accounts mainly for the global stiffening of the materials and the glass transition, while the SRO contributes more to ß relaxation per se.

2.
ACS Appl Mater Interfaces ; 13(15): 17412-17419, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33844514

RESUMO

Supported single-atom catalysts (SACs) have received a lot of attention due to their super-high atom utilization and outstanding catalytic performance. However, the instability of the supported transition-metal (TM) atoms hampers their widespread applications. Exploration of an appropriate substrate to stabilize the supported single atom is crucial for the future implementation of SACs. In recent years, two-dimensional materials have been proposed as possible substrates due to their large specific surface areas, but their chemically inert surfaces are difficult to stabilize TM atoms without defecting or doping. Herein, by means of systematic first-principles calculations, we demonstrate that the defect-free MoS2 monolayer in the unconventional phase (1T') can effectively immobilize single TM atoms owing to its unique electrophilic property as compared to the conventional 2H phase. As a prototype probe, we investigated oxygen reduction reaction (ORR) catalyzed by a total of 21 single TM atoms stabilized on 1T'-MoS2 and successfully screened out two candidates, Cu and Pd@1T'-MoS2, which have a low overpotential of 0.41 and 0.32 V respectively, outperforming most of the previously reported ORR catalysts. Furthermore, we reveal that the adsorption energy of the ORR intermediate, *OH, provides an excellent descriptor to assess the ORR activity, which is further determined by the d-band center of the supported TM adatoms, thus being a great advantage for future design of stable and high-performance SACs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA