Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Rev Genet ; 21(10): 630-644, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32709985

RESUMO

Gene expression involves transcription, translation and the turnover of mRNAs and proteins. The degree to which protein abundances scale with mRNA levels and the implications in cases where this dependency breaks down remain an intensely debated topic. Here we review recent mRNA-protein correlation studies in the light of the quantitative parameters of the gene expression pathway, contextual confounders and buffering mechanisms. Although protein and mRNA levels typically show reasonable correlation, we describe how transcriptomics and proteomics provide useful non-redundant readouts. Integrating both types of data can reveal exciting biology and is an essential step in refining our understanding of the principles of gene expression control.


Assuntos
Biologia Computacional/métodos , Regulação da Expressão Gênica , Biossíntese de Proteínas , Proteínas/análise , Proteoma/análise , RNA Mensageiro/análise , Humanos , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma
2.
Genome Res ; 27(4): 501-511, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28320919

RESUMO

Patterns of gene expression in tumors can arise as a consequence of or result in genomic instability, characterized by the accumulation of somatic copy number alterations (SCNAs) and point mutations (PMs). Expression signatures have been widely used as markers for genomic instability, and both SCNAs and PMs could be thought to associate with distinct signatures given their different formation mechanisms. Here we test this notion by systematically investigating SCNA, PM, and transcriptome data from 2660 cancer patients representing 11 tumor types. Notably, our data indicate that similar expression signatures can be derived from correlating gene expression with either SCNA or PM load. Gene sets related to cell growth and proliferation generally associated positively, and immunoregulatory gene sets negatively, with variant burden. In-depth analyses revealed several genes whose de-regulation correlates with SCNA but not with PM burden, yielding downstream effectors of TP53 and MYC signaling unique to high-SCNA tumors. We compared our findings to expression changes observed in two different cancer mouse models with persistent mitotic chromosomal instability, observing a decrease in proliferative expression signatures. Our results suggest that overexpression of cell-cycle-related genes are a characteristic of proliferation, and likely tumor evolution, rather than ongoing genomic instability.


Assuntos
Aneuploidia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Transcriptoma , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Variações do Número de Cópias de DNA , Instabilidade Genômica , Humanos , Acúmulo de Mutações , Mutação Puntual
3.
Mol Syst Biol ; 11(9): 828, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26415501

RESUMO

A remarkable observation emerging from recent cancer genome analyses is the identification of chromothripsis as a one-off genomic catastrophe, resulting in massive somatic DNA structural rearrangements (SRs). Largely due to lack of suitable model systems, the mechanistic basis of chromothripsis has remained elusive. We developed an integrative method termed "complex alterations after selection and transformation (CAST)," enabling efficient in vitro generation of complex DNA rearrangements including chromothripsis, using cell perturbations coupled with a strong selection barrier followed by massively parallel sequencing. We employed this methodology to characterize catastrophic SR formation processes, their temporal sequence, and their impact on gene expression and cell division. Our in vitro system uncovered a propensity of chromothripsis to occur in cells with damaged telomeres, and in particular in hyperploid cells. Analysis of primary medulloblastoma cancer genomes verified the link between hyperploidy and chromothripsis in vivo. CAST provides the foundation for mechanistic dissection of complex DNA rearrangement processes.


Assuntos
Cromossomos Humanos/genética , Rearranjo Gênico , Genoma Humano/genética , Instabilidade Genômica/genética , Neoplasias/genética , Aneuploidia , Divisão Celular , Linhagem Celular , Aberrações Cromossômicas , Variações do Número de Cópias de DNA/genética , Humanos , Meduloblastoma/genética , Poliploidia , Telômero/genética , Telômero/patologia , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
4.
Cancer Immunol Res ; 10(11): 1407-1419, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36122410

RESUMO

Multiple myeloma is a hematologic malignancy of monoclonal plasma cells that accumulate in the bone marrow. Despite their clinical and pathophysiologic relevance, the roles of bone marrow-infiltrating T cells in treatment-naïve patients are incompletely understood. We investigated whether clonally expanded T cells (i) were detectable in multiple myeloma bone marrow, (ii) showed characteristic immune phenotypes, and (iii) whether dominant clones recognized antigens selectively presented on multiple myeloma cells. Single-cell index sorting and T-cell receptor (TCR) αß sequencing of bone marrow T cells from 13 treatment-naïve patients showed dominant clonal expansion within CD8+ cytolytic effector compartments, and only a minority of expanded T-cell clones expressed the classic immune-checkpoint molecules PD-1, CTLA-4, or TIM-3. To identify their molecular targets, TCRs of 68 dominant bone marrow clones from five selected patients were reexpressed and incubated with multiple myeloma and non-multiple myeloma cells from corresponding patients. Only 1 of 68 TCRs recognized antigen presented on multiple myeloma cells. This TCR was HLA-C-restricted, self-peptide-specific and could be activated by multiple myeloma cells of multiple patients. The remaining dominant T-cell clones did not recognize multiple myeloma cells and were, in part, specific for antigens associated with chronic viral infections. In conclusion, we showed that dominant bone marrow T-cell clones in treatment-naïve patients rarely recognize antigens presented on multiple myeloma cells and exhibit low expression of classic immune-checkpoint molecules. Our data provide experimental context for experiences from clinical immune-checkpoint inhibition trials and will inform future T cell-dependent therapeutic strategies.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Medula Óssea/patologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/patologia , Fenótipo
5.
Nat Commun ; 12(1): 5576, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552071

RESUMO

Chromosome loss that results in monosomy is detrimental to viability, yet it is frequently observed in cancers. How cancers survive with monosomy is unknown. Using p53-deficient monosomic cell lines, we find that chromosome loss impairs proliferation and genomic stability. Transcriptome and proteome analysis demonstrates reduced expression of genes encoded on the monosomes, which is partially compensated in some cases. Monosomy also induces global changes in gene expression. Pathway enrichment analysis reveals that genes involved in ribosome biogenesis and translation are downregulated in all monosomic cells analyzed. Consistently, monosomies display defects in protein synthesis and ribosome assembly. We further show that monosomies are incompatible with p53 expression, likely due to defects in ribosome biogenesis. Accordingly, impaired ribosome biogenesis and p53 inactivation are associated with monosomy in cancer. Our systematic study of monosomy in human cells explains why monosomy is so detrimental and reveals the importance of p53 for monosomy occurrence in cancer.


Assuntos
Monossomia/patologia , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Expressão Gênica , Regulação da Expressão Gênica , Genoma Humano/genética , Instabilidade Genômica , Humanos , Monossomia/genética , Neoplasias/genética , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
iScience ; 24(3): 102151, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33585804

RESUMO

Detailed knowledge of the molecular biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is crucial for understanding of viral replication, host responses, and disease progression. Here, we report gene expression profiles of three SARS-CoV- and SARS-CoV-2-infected human cell lines. SARS-CoV-2 elicited an approximately two-fold higher stimulation of the innate immune response compared to SARS-CoV in the human epithelial cell line Calu-3, including induction of miRNA-155. Single-cell RNA sequencing of infected cells showed that genes induced by virus infections were broadly upregulated, whereas interferon beta/lambda genes, a pro-inflammatory cytokines such as IL-6, were expressed only in small subsets of infected cells. Temporal analysis suggested that transcriptional activities of interferon regulatory factors precede those of nuclear factor κB. Lastly, we identified heat shock protein 90 (HSP90) as a protein relevant for the infection. Inhibition of the HSP90 activity resulted in a reduction of viral replication and pro-inflammatory cytokine expression in primary human airway epithelial cells.

7.
EMBO Mol Med ; 12(3): e10941, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32030896

RESUMO

Chromosome instability (CIN) has been associated with therapeutic resistance in many cancers. However, whether tumours become genomically unstable as an evolutionary mechanism to overcome the bottleneck exerted by therapy is not clear. Using a CIN model of Kras-driven breast cancer, we demonstrate that aneuploid tumours acquire genetic modifications that facilitate the development of resistance to targeted therapy faster than euploid tumours. We further show that the few initially chromosomally stable cancers that manage to persist during treatment do so concomitantly with the acquisition of CIN. Whole-genome sequencing analysis revealed that the most predominant genetic alteration in resistant tumours, originated from either euploid or aneuploid primary tumours, was an amplification on chromosome 6 containing the cMet oncogene. We further show that these tumours are dependent on cMet since its pharmacological inhibition leads to reduced growth and increased cell death. Our results highlight that irrespective of the initial CIN levels, cancer genomes are dynamic and the acquisition of a certain level of CIN, either induced or spontaneous, is a mechanism to circumvent oncogene addiction.


Assuntos
Neoplasias da Mama/genética , Instabilidade Cromossômica , Vício Oncogênico , Aneuploidia , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais , Piperidinas , Piridazinas , Pirimidinas
8.
Cell Rep ; 15(12): 2679-91, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27292643

RESUMO

Chromosome instability (CIN) is associated with poor survival and therapeutic outcome in a number of malignancies. Despite this correlation, CIN can also lead to growth disadvantages. Here, we show that simultaneous overexpression of the mitotic checkpoint protein Mad2 with Kras(G12D) or Her2 in mammary glands of adult mice results in mitotic checkpoint overactivation and a delay in tumor onset. Time-lapse imaging of organotypic cultures and pathologic analysis prior to tumor establishment reveals error-prone mitosis, mitotic arrest, and cell death. Nonetheless, Mad2 expression persists and increases karyotype complexity in Kras tumors. Faced with the selective pressure of oncogene withdrawal, Mad2-positive tumors have a higher frequency of developing persistent subclones that avoid remission and continue to grow.


Assuntos
Instabilidade Cromossômica , Proteínas Mad2/metabolismo , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Oncogenes , Aneuploidia , Animais , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Células Cultivadas , Segregação de Cromossomos/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Camundongos , Mitose , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor ErbB-2 , Fuso Acromático/metabolismo , Imagem com Lapso de Tempo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA