Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 19(1): 302, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847585

RESUMO

BACKGROUND: The intra-erythrocytic development of the malaria parasite Plasmodium falciparum depends on the uptake of a number of essential nutrients from the host cell and blood plasma. It is widely recognized that the parasite imports low molecular weight solutes from the plasma and the consumption of these nutrients by P. falciparum has been extensively analysed. However, although it was already shown that the parasite also imports functional proteins from the vertebrate host, the internalization route through the different infected erythrocyte membranes has not yet been elucidated. In order to further understand the uptake mechanism, the study examined the trafficking of human plasminogen from the extracellular medium into P. falciparum-infected red blood cells. METHODS: Plasmodium falciparum clone 3D7 was cultured in standard HEPES-buffered RPMI 1640 medium supplemented with 0.5% AlbuMAX. Exogenous human plasminogen was added to the P. falciparum culture and the uptake of this protein by the parasites was analysed by electron microscopy and Western blotting. Immunoprecipitation and mass spectrometry were performed to investigate possible protein interactions that may assist plasminogen import into infected erythrocytes. The effect of pharmacological inhibitors of different cellular physiological processes in plasminogen uptake was also tested. RESULTS: It was observed that plasminogen was selectively internalized by P. falciparum-infected erythrocytes, with localization in plasma membrane erythrocyte and parasite's cytosol. The protein was not detected in parasitic food vacuole and haemoglobin-containing vesicles. Furthermore, in erythrocyte cytoplasm, plasminogen was associated with the parasite-derived membranous structures tubovesicular network (TVN) and Maurer's clefts. Several proteins were identified in immunoprecipitation assay and may be involved in the delivery of plasminogen across the P. falciparum multiple compartments. CONCLUSION: The findings here reported reveal new features regarding the acquisition of plasma proteins of the host by P. falciparum-infected erythrocytes, a mechanism that involves the exomembrane system, which is distinct from the haemoglobin uptake, clarifying a route that may be potentially targeted for inhibition studies.


Assuntos
Eritrócitos/parasitologia , Plasminogênio/metabolismo , Plasmodium falciparum/fisiologia , Membrana Eritrocítica/parasitologia , Interações Hospedeiro-Parasita , Humanos , Malária Falciparum/parasitologia , Plasma/química , Transporte Proteico
2.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049997

RESUMO

Cisplatin is a chemotherapy drug widely used in the treatment of solid tumors. However, nephrotoxicity has been reported in about one-third of patients undergoing cisplatin therapy. Proximal tubules are the main target of cisplatin toxicity and cellular uptake; elimination of this drug can modulate renal damage. Organic transporters play an important role in the transport of cisplatin into the kidney and organic cations transporter 2 (OCT-2) has been shown to be one of the most important transporters to play this role. On the other hand, multidrug and toxin extrusion 1 (MATE-1) transporter is the main protein that mediates the extrusion of cisplatin into the urine. Cisplatin nephrotoxicity has been shown to be enhanced by increased OCT-2 and/or reduced MATE-1 activity. Peroxisome proliferator-activated receptor alpha (PPAR-α) is the transcription factor which controls lipid metabolism and glucose homeostasis; it is highly expressed in the kidneys and interacts with both MATE-1 and OCT-2. Considering the above, we treated wild-type and PPAR-α knockout mice with cisplatin in order to evaluate the severity of nephrotoxicity. Cisplatin induced renal dysfunction, renal inflammation, apoptosis and tubular injury in wild-type mice, whereas PPAR-α deletion protected against these alterations. Moreover, we observed that cisplatin induced down-regulation of organic transporters MATE-1 and OCT-2 and that PPAR-α deletion restored the expression of these transporters. In addition, PPAR-α knockout mice at basal state showed increased MATE-1 expression and reduced OCT-2 levels. Here, we show for the first time that PPAR-α deletion protects against cisplatin nephrotoxicity and that this protection is via modulation of the organic transporters MATE-1 and OCT-2.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , PPAR alfa/genética , Insuficiência Renal/induzido quimicamente , Insuficiência Renal/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Regulação para Baixo/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Transporte de Cátions Orgânicos/genética , Transportador 2 de Cátion Orgânico/genética , PPAR alfa/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
3.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708962

RESUMO

Hypercholesterolemia, also called high cholesterol, is a form of hyperlipidemia, which may be a consequence of diet, obesity or diabetes. In addition, increased levels of low-density lipoprotein (LDL) and reduced levels of high-density lipoprotein (HDL) cholesterol are associated with a higher risk of atherosclerosis and coronary heart disease. Thus, controlling cholesterol levels is commonly necessary, and fibrates have been used as lipid-lowering drugs. Gemfibrozil is a fibrate that acts via peroxisome proliferator-activated receptor alpha to promote changes in lipid metabolism and decrease serum triglyceride levels. However, anemia and leukopenia are known side effects of gemfibrozil. Considering that gemfibrozil may lead to anemia and that gemfibrozil acts via peroxisome proliferator-activated receptor alpha, we treated wild-type and peroxisome proliferator-activated receptor alpha-knockout mice with gemfibrozil for four consecutive days. Gemfibrozil treatment led to anemia seven days after the first administration of the drug; we found reduced levels of hemoglobin, as well as red blood cells, white blood cells and a reduced percentage of hematocrits. PPAR-alpha-knockout mice were capable of reversing all of those reduced parameters induced by gemfibrozil treatment. Erythropoietin levels were increased in the serum of gemfibrozil-treated animals, and we also observed an increased expression of hypoxia-inducible factor-2 alpha (HIF-2α) and erythropoietin in renal tissue, while PPAR-alpha knockout mice treated with gemfibrozil did not present increased levels of serum erythropoietin or tissue HIF-2α and erythropoietin mRNA levels in the kidneys. We analyzed bone marrow and found that gemfibrozil reduced erythrocytes and hematopoietic stem cells in wild-type mice but not in PPAR-alpha-knockout mice, while increased colony-forming units were observed only in wild-type mice treated with gemfibrozil. Here, we show for the first time that gemfibrozil treatment leads to anemia and leukopenia via peroxisome proliferator-activated receptor alpha in mice.


Assuntos
Anemia/induzido quimicamente , Genfibrozila/efeitos adversos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Hipolipemiantes/efeitos adversos , Leucopenia/induzido quimicamente , PPAR alfa/metabolismo , Anemia/metabolismo , Animais , Contagem de Células , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Leucopenia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Molecules ; 25(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963528

RESUMO

Metformin is the first-line drug for type 2 diabetes mellitus control. It is established that this drug traffics through OCT-2 and MATE-1 transporters in kidney tubular cells and is excreted in its unaltered form in the urine. Hereby, we provide evidence that points towards the metformin-dependent upregulation of OCT-2 and MATE-1 in the kidney via the transcription factor proliferator-activated receptor alpha (PPARα). Treatment of wild type mice with metformin led to the upregulation of the expression of OCT-2 and MATE-1 by 34% and 157%, respectively. An analysis in a kidney tubular cell line revealed that metformin upregulated PPARα and OCT-2 expression by 37% and 299% respectively. MK-886, a PPARα antagonist, abrogated the OCT-2 upregulation by metformin and reduced MATE-1 expression. Conversely, gemfibrozil, an agonist of PPARα, elicited the increase of PPARα, OCT-2, and MATE-1 expression by 115%, 144%, and 376%, respectively. PPARα knockout mice failed to upregulate both the expression of OCT-2 and MATE-1 in the kidney upon metformin treatment, supporting the PPARα-dependent metformin upregulation of the transporters in this organ. Taken together, our data sheds light on the metformin-induced mechanism of transporter modulation in the kidney, via PPARα, and this effect may have implications for drug safety and efficacy.


Assuntos
Rim/química , Metformina/administração & dosagem , Proteínas de Transporte de Cátions Orgânicos/genética , Transportador 2 de Cátion Orgânico/genética , PPAR alfa/genética , Animais , Linhagem Celular , Genfibrozila/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Indóis/farmacologia , Rim/efeitos dos fármacos , Masculino , Metformina/farmacologia , Camundongos , Regulação para Cima/efeitos dos fármacos
5.
Mediators Inflamm ; 2019: 9086758, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360120

RESUMO

Macrophages contribute to a continuous increase in blood pressure and kidney damage in hypertension, but their polarization status and the underlying mechanisms have not been clarified. This study revealed an important role for M2 macrophages and the YM1/Chi3l3 protein in hypertensive nephropathy in a mouse model of hypertension. Bone marrow cells were isolated from the femurs and tibia of male FVB/N (control) and transgenic hypertensive animals that overexpressed the rat form of angiotensinogen (TGM(rAOGEN)123, TGM123-FVB/N). The cells were treated with murine M-CSF and subsequently with LPS+IFN-γ to promote their polarization into M1 macrophages and IL-4+IL-13 to trigger the M2 phenotype. We examined the kidneys of TGM123-FVB/N animals to assess macrophage polarization and end-organ damage. mRNA expression was evaluated using real-time PCR, and protein levels were assessed through ELISA, CBA, Western blot, and immunofluorescence. Histology confirmed high levels of renal collagen. Cells stimulated with LPS+IFN-γ in vitro showed no significant difference in the expression of CD86, an M1 marker, compared to cells from the controls or the hypertensive mice. When stimulated with IL-4+IL-13, however, macrophages of the hypertensive group showed a significant increase in CD206 expression, an M2 marker. The M2/M1 ratio reached 288%. Our results indicate that when stimulated in vitro, macrophages from hypertensive mice are predisposed toward polarization to an M2 phenotype. These data support results from the kidneys where we found an increased infiltration of macrophages predominantly polarized to M2 associated with high levels of YM1/Chi3l3 (91,89%), suggesting that YM1/Chi3l3 may be a biomarker of hypertensive nephropathy.


Assuntos
Hipertensão/metabolismo , Nefropatias/metabolismo , Lectinas/metabolismo , Macrófagos/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Biomarcadores/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Rim/metabolismo , Nefropatias/genética , Lectinas/genética , Ativação de Macrófagos/fisiologia , Masculino , Camundongos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , beta-N-Acetil-Hexosaminidases/genética
6.
Biochem Biophys Res Commun ; 503(2): 722-728, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29913151

RESUMO

Calcium signaling has an essential role in fundamental processes of Plasmodium life cycle, including migration, cell invasion and parasite development. Two important players in calcium homeostasis, the Histidine Triad (HIT) protein that is implicated in calcium signaling in mammalian cells and calmodulin, which is a classic calcium sensor in eukaryotes are present in Plasmodium falciparum, however theirs function is unknown in the parasite. Here, we investigated the involvement of the P. falciparum Histidine Triad protein (PfHint-1) and calmodulin (PfCaM) in calcium signaling and intracellular proteolysis. For this, we targeted PfHint-1 with a hemagglutinin tail and overexpressed both proteins. We observed that PfHint-1 is expressed throughout the erythrocytic stages and partially colocalizes to the endoplasmic reticulum. Parasites overexpressing PfHint-1 displayed lower ER Ca2+ content and a higher [Ca2+]cyt rise in the parasite cytosol upon Ca2+ addition to the extracellular medium after depletion of ER calcium store. PfCaM-overexpressing parasites exhibit a higher [Ca2+]cyt rise after challenge with the calmodulin inhibitor, calmidazolium. The calcium-dependent proteolytic activity in PfCaM- and PfHint-1-overexpressing parasites was increased and correlated to alterations in calcium homeostasis. Taken together, our results indicate the participation of these proteins in P. falciparum fundamental cellular processes and highlights promising targets for the development of antimalarial drugs.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Hidrolases/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Sinalização do Cálcio , Eritrócitos/parasitologia , Humanos , Proteólise
7.
Bioorg Med Chem ; 25(17): 4628-4636, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28728898

RESUMO

Malaria is a global human parasitic disease mainly caused by the protozoon Plasmodium falciparum. Increased parasite resistance to current drugs determines the relevance of finding new treatments against new targets. A novel target is the M1 alanyl-aminopeptidase from P. falciparum (PfA-M1), which is essential for parasite development in human erythrocytes and is inhibited by the pseudo-peptide bestatin. In this work, we used a combinatorial multicomponent approach to produce a library of peptidomimetics and screened it for the inhibition of recombinant PfA-M1 (rPfA-M1) and the in vitro growth of P. falciparum erythrocytic stages (3D7 and FcB1 strains). Dose-response studies with selected compounds allowed identifying the bestatin-based peptidomimetic KBE009 as a submicromolar rPfA-M1 inhibitor (Ki=0.4µM) and an in vitro antimalarial compound as potent as bestatin (IC50=18µM; without promoting erythrocyte lysis). At therapeutic-relevant concentrations, KBE009 is selective for rPfA-M1 over porcine APN (a model of these enzymes from mammals), and is not cytotoxic against HUVEC cells. Docking simulations indicate that this compound binds PfA-M1 without Zn2+ coordination, establishing mainly hydrophobic interactions and showing a remarkable shape complementarity with the active site of the enzyme. Moreover, KBE009 inhibits the M1-type aminopeptidase activity (Ala-7-amido-4-methylcoumarin substrate) in isolated live parasites with a potency similar to that of the antimalarial activity (IC50=82µM), strongly suggesting that the antimalarial effect is directly related to the inhibition of the endogenous PfA-M1. These results support the value of this multicomponent strategy to identify PfA-M1 inhibitors, and make KBE009 a promising hit for drug development against malaria.


Assuntos
Antimaláricos/química , Antígenos CD13/antagonistas & inibidores , Dipeptídeos/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/síntese química , Antimaláricos/farmacologia , Sítios de Ligação , Antígenos CD13/genética , Antígenos CD13/metabolismo , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Dipeptídeos/síntese química , Dipeptídeos/farmacologia , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Leucina/análogos & derivados , Leucina/química , Leucina/farmacologia , Simulação de Acoplamento Molecular , Peptidomiméticos , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade
8.
J Biol Chem ; 290(45): 26914-26926, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26374900

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that invades host cells, creating a parasitophorous vacuole where it communicates with the host cell cytosol through the parasitophorous vacuole membrane. The lytic cycle of the parasite starts with its exit from the host cell followed by gliding motility, conoid extrusion, attachment, and invasion of another host cell. Here, we report that Ca(2+) oscillations occur in the cytosol of the parasite during egress, gliding, and invasion, which are critical steps of the lytic cycle. Extracellular Ca(2+) enhances each one of these processes. We used tachyzoite clonal lines expressing genetically encoded calcium indicators combined with host cells expressing transiently expressed calcium indicators of different colors, and we measured Ca(2+) changes in both parasites and host simultaneously during egress. We demonstrated a link between cytosolic Ca(2+) oscillations in the host and in the parasite. Our approach also allowed us to measure two new features of motile parasites, which were enhanced by Ca(2+) influx. This is the first study showing, in real time, Ca(2+) signals preceding egress and their direct link with motility, an essential virulence trait.


Assuntos
Sinalização do Cálcio , Toxoplasma/fisiologia , Animais , Ionóforos de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Linhagem Celular , Células HeLa , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/fisiologia , Humanos , Ionomicina/farmacologia , Proteínas Luminescentes/genética , Proteínas Recombinantes/genética , Toxoplasma/genética , Toxoplasma/patogenicidade , Transfecção , Virulência
9.
Anal Biochem ; 468: 22-7, 2015 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-25281458

RESUMO

In the intraerythrocytic trophozoite stages of Plasmodium falciparum, the calcium-dependent cysteine protease calpain (Pf-calpain) has an important role in the parasite calcium modulation and cell development. We established specific conditions to follow by confocal microscopy and spectrofluorimetry measurements the intracellular activity of Pf-calpain in live cells. The catalytic activity was measured using the fluorogenic Z-Phe-Arg-MCA (where Z is carbobenzoxy and MCA is 4-methylcoumaryl-7-amide). The calmodulin inhibitor calmidazolium and the sarcoplasmic reticulum calcium ATPase inhibitor thapsigargin were used for modifications in the cytosolic calcium concentrations that persisted in the absence of extracellular calcium. The observed calcium-dependent peptidase activity was greatly inhibited by specific cysteine protease inhibitor E-64 and by the selective calpain inhibitor ALLN (N-acetyl-l-leucyl-l-leucyl-l-norleucinal). Taken together, we observed that intracellular Pf-calpain can be selectively detected and is the main calcium-dependent protease in the intraerythrocytic stages of the parasite. The method described here can be helpful in cell metabolism studies and antimalarial drug screening.


Assuntos
Calpaína/metabolismo , Plasmodium chabaudi/enzimologia , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Animais , Cálcio/metabolismo , Calpaína/análise , Calpaína/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Leupeptinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Proteínas de Protozoários/análise , Proteínas de Protozoários/antagonistas & inibidores , Espectrometria de Fluorescência
10.
Nanomedicine ; 11(2): 351-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25461288

RESUMO

Several synthetic metallated protoporphyrins (M-PPIX) were tested for their ability to block the cell cycle of the lethal human malaria parasite Plasmodium falciparum. After encapsulating the porphyrin derivatives in micro- and nanocapsules of marine atelocollagen, their effects on cultures of red blood cells infected (RBC) with P. falciparum were verified. RBCs infected with synchronized P. falciparum incubated for 48 h showed a toxic effect over a micromolar range. Strikingly, the IC50 of encapsulated metalloporphyrins reached nanomolar concentrations, where Zn-PPIX showed the best antimalarial effect, with an IC50=330 nM. This value is an 80-fold increase in the antimalarial activity compared to the antimalarial effect of non-encapsulated Zn-PPIX. These findings reveal that the incubation of P. falciparum infected-RBCs with 20 µM Zn-PPIX reduced the size of hemozoin crystal by 34%, whereas a 28% reduction was noticed with chloroquine, confirming the importance of heme detoxification pathway in drug therapy. FROM THE CLINICAL EDITOR: In this study, synthetic metalloporphyrins were tested as therapeutics that target Plasmodium falciparum. The IC50 of encapsulated metalloporphyrins was found to be in the nanomolar concentration range, with encapsulated Zn-PPIX showing an 80-fold increase in its antimalarial activity compared to the non-encapsulated form.


Assuntos
Antimaláricos/administração & dosagem , Malária Falciparum/tratamento farmacológico , Metaloporfirinas/administração & dosagem , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/química , Colágeno/administração & dosagem , Colágeno/química , Humanos , Malária Falciparum/parasitologia , Nanocápsulas/administração & dosagem , Nanocápsulas/química
11.
Exp Parasitol ; 138: 55-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24534615

RESUMO

During the last decade, a vast number of inhibitors, ligands and fluorescent probes have evolved for mammalian protein kinases; however, the suitability of these compounds for studies of evolutionarily divergent eukaryotes has mostly been left beyond the scope of research. Here, we examined whether adenosine analogue-oligoarginine conjugates that had been extensively characterized as efficient inhibitors of the human protein kinases are applicable for targeting Plasmodium protein kinases. We demonstrated that ARCs were not only able to bind to and inhibit a representative member of Plasmodium falciparum kinome (cGMP-dependent protein kinase) in biochemical assay, but also affected the general phosphorylation levels in parasites released from the infected red blood cells upon saponin treatment. These findings urge advantaging of already existing biochemical tools, whose initially generic, but intrinsically "tunable" selectivity profiles could be used for dissection of signaling pathways outside the initially defined group of biological targets.


Assuntos
Adenosina/análogos & derivados , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Células Cultivadas , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Membrana Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Corantes Fluorescentes/química , Regulação Enzimológica da Expressão Gênica , Humanos , Processamento de Imagem Assistida por Computador , Malária Falciparum/tratamento farmacológico , Microscopia Confocal , Parasitemia/tratamento farmacológico
12.
Int J Mol Sci ; 15(12): 22320-30, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25479077

RESUMO

There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS) interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS) in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members.


Assuntos
Malária/parasitologia , Melatonina/farmacologia , Parasitos/genética , Plasmodium falciparum/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Regulação para Cima/genética , Animais , Humanos , Parasitos/efeitos dos fármacos , Parasitos/enzimologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
13.
Mol Cell Endocrinol ; 579: 112085, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827227

RESUMO

Our group has shown in several papers that kinin B1 receptor (B1R) is involved in metabolic adaptations, mediating glucose homeostasis and interfering in leptin and insulin signaling. Since catecholamines are involved with metabolism management, we sought to evaluate B1R role in catecholamine synthesis/secretion. Using B1R global knockout mice, we observed increased basal epinephrine content, accompanied by decreased hepatic glycogen content and increased glucosuria. When these mice were challenged with maximal intensity exercise, they showed decreased epinephrine and norepinephrine response, accompanied by disturbed glycemic responses to effort and poor performance. This phenotype was related to alterations in adrenal catecholamine synthesis: increased basal epinephrine concentration and reduced norepinephrine content in response to exercise, as well decreased gene expression and protein content of tyrosine hydroxylase and decreased gene expression of dopamine beta hydroxylase and kinin B2 receptor. We conclude that the global absence of B1R impairs catecholamine synthesis, interfering with glucose metabolism at rest and during maximal exercise.


Assuntos
Epinefrina , Cininas , Camundongos , Animais , Homeostase , Catecolaminas , Glucose , Norepinefrina
14.
Biochem J ; 444(2): 211-8, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22428617

RESUMO

TSSA (trypomastigote small surface antigen) is a polymorphic mucin-like molecule displayed on the surface of Trypanosoma cruzi trypomastigote forms. To evaluate its functional properties, we undertook comparative biochemical and genetic approaches on isoforms present in parasite stocks from extant evolutionary lineages (CL Brener and Sylvio X-10). We show that CL Brener TSSA, but not the Sylvio X-10 counterpart, exhibits dose-dependent and saturable binding towards non-macrophagic cell lines. This binding triggers Ca(2+)-based signalling responses in the target cell while providing an anchor for the invading parasite. Accordingly, exogenous addition of either TSSA-derived peptides or specific antibodies significantly inhibits invasion of CL Brener, but not Sylvio X-10, trypomastigotes. Non-infective epimastigote forms, which do not express detectable levels of TSSA, were stably transfected with TSSA cDNA from either parasite stock. Although both transfectants produced a surface-associated mucin-like TSSA product, epimastigotes expressing CL Brener TSSA showed a ~2-fold increase in their attachment to mammalian cells. Overall, these findings indicate that CL Brener TSSA functions as a parasite adhesin, engaging surface receptor(s) and inducing signalling pathways on the host cell as a prerequisite for parasite internalization. More importantly, the contrasting functional features of TSSA isoforms provide one appealing mechanism underlying the differential infectivity of T. cruzi stocks.


Assuntos
Trypanosoma cruzi/patogenicidade , Glicoproteínas Variantes de Superfície de Trypanosoma/fisiologia , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Células HEK293 , Humanos , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Células Vero
15.
Biomedicines ; 11(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37626691

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is a multifactorial, world public health problem that often develops as a consequence of acute kidney injury (AKI) and inflammation. Strategies are constantly sought to avoid and mitigate the irreversibility of this disease. One of these strategies is to decrease the inflammation features of AKI and, consequently, the transition to CKD. METHODS: C57Bl6J mice were anesthetized, and surgery was performed to induce unilateral ischemia/reperfusion as a model of AKI to CKD transition. For acute studies, the animals received the Kinin B1 receptor (B1R) antagonist before the surgery, and for the chronic model, the animals received one additional dose after the surgery. In addition, B1R genetically deficient mice were also challenged with ischemia/reperfusion. RESULTS: The absence and antagonism of B1R improved the kidney function following AKI and prevented CKD transition, as evidenced by the preserved renal function and prevention of fibrosis. The protective effect of B1R antagonism or deficiency was associated with increased levels of macrophage type 2 markers in the kidney. CONCLUSIONS: The B1R is pivotal to the evolution of AKI to CKD, and its antagonism shows potential as a therapeutic tool in the prevention of CKD following AKI.

16.
Malar J ; 11: 69, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22420332

RESUMO

BACKGROUND: Plasmodium has a complex cell biology and it is essential to dissect the cell-signalling pathways underlying its survival within the host. METHODS: Using the fluorescence resonance energy transfer (FRET) peptide substrate Abz-AIKFFARQ-EDDnp and Fluo4/AM, the effects of extracellular ATP on triggering proteolysis and Ca²âº signalling in Plasmodium berghei and Plasmodium yoelii malaria parasites were investigated. RESULTS: The protease activity was blocked in the presence of the purinergic receptor blockers suramin (50 µM) and PPADS (50 µM) or the extracellular and intracellular calcium chelators EGTA (5 mM) and BAPTA/AM (25, 100, 200 and 500 µM), respectively for P. yoelii and P. berghei. Addition of ATP (50, 70, 200 and 250 µM) to isolated parasites previously loaded with Fluo4/AM in a Ca²âº-containing medium led to an increase in cytosolic calcium. This rise was blocked by pre-incubating the parasites with either purinergic antagonists PPADS (50 µM), TNP-ATP (50 µM) or the purinergic blockers KN-62 (10 µM) and Ip5I (10 µM). Incubating P. berghei infected cells with KN-62 (200 µM) resulted in a changed profile of merozoite surface protein 1 (MSP1) processing as revealed by western blot assays. Moreover incubating P. berghei for 17 h with KN-62 (10 µM) led to an increase in rings forms (82% ± 4, n = 11) and a decrease in trophozoite forms (18% ± 4, n = 11). CONCLUSIONS: The data clearly show that purinergic signalling modulates P. berghei protease(s) activity and that MSP1 is one target in this pathway.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/metabolismo , Plasmodium yoelii/efeitos dos fármacos , Plasmodium yoelii/metabolismo , Proteólise , Compostos de Anilina/metabolismo , Peptídeos/metabolismo , Transdução de Sinais , Coloração e Rotulagem , Xantenos/metabolismo
17.
Life Sci ; 309: 121034, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208659

RESUMO

The Kallikrein-Kinin System (KKS) plays an important role in energy metabolism. We have previously described the importance of the kinin B1 receptor (B1R) in metabolism regulation. Considering that the liver manages the different energy demands of different body tissues, we combined two stressful conditions - fasting and voluntary exercise - to address how B1R may affect liver metabolism, focusing on mitochondrial function. AIMS: To investigate how the kinin B1 receptor (B1R) modulates mitochondrial activity under stress conditions, focusing on the rate of energy expenditure and shift in metabolism. MAIN METHODS: Wild-type and B1R-knockout (B1KO) male mice remained in a calorimetric cage with a wheel for 7 days; 48 h before euthanasia, half of the animals from both groups were submitted to fasting conditions. Mitochondrial activity, ketone bodies, and gene expression involving mitochondrial activity were evaluated. KEY FINDINGS: B1R modulates the mitochondrial activity under fasting and voluntary exercise, reducing the VO2 expenditure and HEAT. B1KO animals who exercised and underwent fasting did not have increased glucose levels, suggesting a preference for lipids as an energy source. Moreover, these animals displayed RER around 0.8, which indicates a ß-oxidation increment. Interestingly, the lack of B1R did not induce mitochondrial activity and biogenesis, suggesting interference in metabolism responsivity, a condition modulated by sirtuins under PGC-1α control. SIGNIFICANCE: B1R modulates mitochondrial respiratory control ratios, which suggests metabolic suppression, influencing hepatic metabolism and, consequently, energy homeostasis.


Assuntos
Receptor B1 da Bradicinina , Sirtuínas , Camundongos , Animais , Masculino , Receptor B1 da Bradicinina/genética , Cininas , Jejum , Mitocôndrias/metabolismo , Corpos Cetônicos , Glucose , Lipídeos , Receptor B2 da Bradicinina/genética
18.
Life Sci ; 294: 120007, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600938

RESUMO

The liver has an essential role in responding to metabolic demands under stress conditions. The organ stores, releases, and recycles metabolism-related substrates. However, it is not clear how the Kallikrein-Kinin System modulates metabolic flexibility shift between energetic sources. AIMS: To analyze the hepatic metabolism in kinin B1 receptor deficient mice (B1KO mice) under fasting conditions. MAIN METHODS: WT and B1KO male mice were allocated in a calorimetric cage for 7 days and 48 h before the euthanasia, half of the animals of both groups were under fasting conditions. Biochemical parameters, ketone bodies (KB), and gene expression involving the liver energetic metabolism genes were evaluated. KEY FINDINGS: Kinin B1 receptor (B1R) modulates the metabolic shift under fasting conditions, reducing the VO2 expenditure. A preference for carbohydrates as an energetic source is suggested, as the B1KO group did not display an increase in KB in the serum. Moreover, the B1KO animals displayed higher serum triglycerides concentration compared to WT fasting mice. Interestingly, the lack of B1R induces the increase expression of enzymes from the glycolysis and lipolysis pathways under the fed. However, under fasting, the enzymatic expression of gluconeogenesis, glyceroneogenesis, and ketogenesis of these pathways does not occur, suggesting an absence of the shift metabolism responsivity, and this condition is modulated by PDK4 under FOXO1 control. SIGNIFICANCE: B1R has an important role in the hepatic glucose metabolism, which in turn influences the energetic metabolism, and in long-term outcomes, such as in the decrease in hepatic glycogen stores and in the enhancement of hepatic metabolism.


Assuntos
Jejum , Gluconeogênese , Lipogênese , Fígado/metabolismo , Receptor B1 da Bradicinina/fisiologia , Estresse Fisiológico , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Sci Rep ; 12(1): 2890, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190586

RESUMO

Malignant melanoma is the main cause of death in patients with skin cancer. Overexpression of Proteolipid protein 2 (PLP2) increased tumor metastasis and the knockdown of PLP2 inhibited the growth and metastasis of melanoma cells. In the present work, we studied the antitumor activity of peptide Rb4 derived from protein PLP2. In vitro, Rb4 induced F-actin polymerization, prevented F-actin depolymerization and increased the ER-derived cytosolic calcium. Such effects were associated with necrosis of murine melanoma B16F10-Nex2 cells and with inhibition of the viability of human cancer cell lines. Loss of plasma membrane integrity, dilation of mitochondria, cytoplasm vacuolation and absence of chromatin condensation characterized tumor cell necrosis. Cleavage of PARP-1 and inhibition of RIP1 expression were also observed. In vivo, peptide Rb4 reduced the lung metastasis of tumor cells and delayed the subcutaneous melanoma growth in a syngeneic model. Rb4 induced the expression of two DAMPs molecules, HMGB1 and calreticulin, in B16F10-Nex2. Our results suggest that peptide Rb4 acts directly on tumor cells inducing the expression of DAMPs, which trigger the immunoprotective effect in vivo against melanoma cells. We suggest that peptide Rb4 is a promising compound to be developed as an anticancer drug.


Assuntos
Morte Celular/genética , Expressão Gênica/genética , Expressão Gênica/fisiologia , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/farmacologia , Melanoma/genética , Melanoma/patologia , Poli(ADP-Ribose) Polimerase-1/fisiologia , Proteolipídeos/genética , Proteolipídeos/farmacologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Animais , Antineoplásicos , Calreticulina/genética , Calreticulina/metabolismo , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Humanos , Proteínas com Domínio MARVEL/metabolismo , Proteínas com Domínio MARVEL/fisiologia , Camundongos , Necrose , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Peptídeos , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteolipídeos/metabolismo , Proteolipídeos/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
20.
PLoS One ; 17(5): e0267845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617279

RESUMO

The kallikrein-kinin system has been implicated in body weight and glucose homeostasis. Their major effectors act by binding to the kinin B2 and B1 receptors. It was assessed the role of the kinin B1 receptor in weight and glucose homeostasis in B1 receptor knockout mice (B1RKO) subjected to a cafeteria diet (CAF). Wild-type (WT) and B1RKO male mice (C57BL/6 background; 8 weeks old) were fed a standard diet (SD) or CAF for 14 weeks, ad libitum, and four groups were formed: WT-SD; B1RKO-SD; WT-CAF; B1RKO-CAF. Body weight and food intake were assessed weekly. It was performed glucose tolerance (GTT) and insulin tolerance tests (ITT), and HOMA-IR, HOMA-ß and HOMA-ß* 1/HOMA-IR were calculated. Islets from WT and B1RKO were isolated in order to measure the insulin secretion. Western blot was used to assess the hepatic AKT phosphorylation and qPCR to assess gene expression. CAF induced a higher body mass gain in B1RKO compared to WT mice. CAF diet increased epididymal fat depot mass, hepatic fat infiltration and hepatic AKT phosphorylation in both genotypes. However, B1RKO mice presented lower glycemic response during GTT when fed with CAF, and a lower glucose decrease in the ITT. This higher resistance was overcomed with higher insulin secretion when stimulated by high glucose, resulting in higher glucose uptake in the GTT when submitted to CAF, despite lower insulin sensitivity. Islets from B1RKO delivered 4 times more insulin in 3-month-old mice than islets from WT. The higher insulin disposition index and high insulin delivery of B1RKO can explain the decreased glucose excursion during GTT. In conclusion, CAF increased the ß-cell function in B1RKO mice, compensated by the diet-induced insulin resistance and resulting in a healthier glycemic response despite the higher weight gain.


Assuntos
Hiperinsulinismo , Resistência à Insulina , Receptores da Bradicinina/metabolismo , Animais , Glicemia/metabolismo , Dieta , Dieta Hiperlipídica , Glucose/metabolismo , Homeostase , Insulina/metabolismo , Resistência à Insulina/fisiologia , Cininas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA