Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(5): 2965-2972, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38682378

RESUMO

Nucleic acid therapeutics have attracted recent attention as promising preventative solutions for a broad range of diseases. Nonviral delivery vectors, such as cationic polymers, improve the cellular uptake of nucleic acids without suffering the drawbacks of viral delivery vectors. However, these delivery systems are faced with a major challenge for worldwide deployment, as their poor thermal stability elicits the need for cold chain transportation. Here, we demonstrate a biomaterial strategy to drastically improve the thermal stability of DNA polyplexes. Importantly, we demonstrate long-term room temperature storage with a transfection efficiency maintained for at least 9 months. Additionally, extreme heat shock studies show retained luciferase expression after heat treatment at 70 °C. We therefore provide a proof of concept for a platform biotechnology that could provide long-term room temperature storage for temperature-sensitive nucleic acid therapeutics, eliminating the need for the cold chain, which in turn would reduce the cost of distributing life-saving therapeutics worldwide.


Assuntos
DNA , Humanos , DNA/química , Transfecção/métodos , Polímeros/química , Resposta ao Choque Térmico/efeitos dos fármacos , Temperatura , Temperatura Alta
2.
Biotechnol Bioeng ; 118(2): 592-600, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33090452

RESUMO

The temperature sensitivity of vaccines and therapeutic proteins forces the distribution of life-saving treatments to rely heavily on the temperature-controlled (usually 2-8°C) supply and distribution network known as the cold chain. Here, using avidin as a model, we demonstrate how surface engineering could significantly increase the thermal stability of therapeutic proteins. A combination of spectroscopic (Fourier transform infrared, circular dichroism, and ultraviolet-visible) and scattering techniques (dynamic light scattering, small-angle, and wide-angle X-ray scattering) were deployed to probe the activity, structure, and stability of the model protein. Temperature-dependent synchrotron radiation circular dichroism spectroscopy was used to demonstrate a significant increase in thermal stability, with a half denaturation temperature of 139.0°C and reversible unfolding with modified avidin returning to a 90% folded state when heated to temperatures below 100°C. Accelerated aging studies revealed that modified avidin retained its secondary structure after storage at 40°C for 56 days, equivalent to 160 days at 25°C. Furthermore, binding studies with multiple ligands revealed that the binding site remained functional after modification. As a result, this approach has potential as a storage technology for therapeutic proteins and the elimination of the cold chain, enabling the dissemination of life-saving vaccines worldwide.


Assuntos
Avidina/química , Modelos Moleculares , Dobramento de Proteína , Dicroísmo Circular , Solventes , Temperatura , Termodinâmica
3.
Chem Sci ; 12(27): 9528-9545, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34349928

RESUMO

Understanding protein folding in different environmental conditions is fundamentally important for predicting protein structures and developing innovative antibody formulations. While the thermodynamics and kinetics of folding and unfolding have been extensively studied by computational methods, experimental methods for determining antibody conformational transition pathways are lacking. Motivated to fill this gap, we prepared a series of unique formulations containing a high concentration of a chimeric immunoglobin G4 (IgG4) antibody with different excipients in the presence and absence of the ionic liquid (IL) choline dihydrogen phosphate. We determined the effects of different excipients and IL on protein thermal and structural stability by performing variable temperature circular dichroism and bio-layer interferometry analyses. To further rationalise the observations of conformational changes with temperature, we carried out molecular dynamics simulations on a single antibody binding fragment from IgG4 in the different formulations, at low and high temperatures. We developed a methodology to study the conformational transitions and associated thermodynamics of biomolecules, and we showed IL-induced conformational transitions. We showed that the increased propensity for conformational change was driven by preferential binding of the dihydrogen phosphate anion to the antibody fragment. Finally, we found that a formulation containing IL with sugar, amino acids and surfactant is a promising candidate for stabilising proteins against conformational destabilisation and aggregation. We hope that ultimately, we can help in the quest to understand the molecular basis of the stability of antibodies and protein misfolding phenomena and offer new candidate formulations with the potential to revive lost therapeutic candidates.

4.
Anal Methods ; 12(17): 2244-2252, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33094764

RESUMO

Hydrophobic ionic liquids containing bis(trifluoromethanesulfonyl)imide, [NTf2]-, anions partially dissolve in aqueous phases. The potential ecotoxicity of [NTf2]- means wastewater streams must be closely monitored to avoid environmental release. A new ion chromatography method is presented, which improves on existing techniques and methods by significantly decreasing analysis time and improving chromatographic peak properties. Consequently, the limit of detection is lowered to 5 µM (1.4 ppm) and limit of quantification lowered to 30 µM (8.5 ppm). The method is reproducible and has a high precision for short and medium chain length ionic liquids (RSD = 0.95%); however, microemulsion effects increase measurement errors for long chain ionic liquids (RSD = 2.32%), albeit by a relatively small amount. Hence, the method is a highly accurate analytical method for highly polarizable [NTf2]- anions, and quantification in the presence of high salinity samples, such as seawater, is readily achieved. Importantly, this method is a significant improvement on existing techniques (chromatography, NMR, UV-Vis) for many reasons, making it ideal for environmental monitoring or process design of [NTf2]- ionic liquid-based applications.

5.
Chem Sci ; 12(1): 196-209, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163590

RESUMO

In this work we experimentally investigate solvent and temperature induced conformational transitions of proteins and examine the role of ion-protein interactions in determining the conformational preferences of avidin, a homotetrameric glycoprotein, in choline-based ionic liquid (IL) solutions. Avidin was modified by surface cationisation and the addition of anionic surfactants, and the structural, thermal, and conformational stabilities of native and modified avidin were examined using dynamic light scattering, differential scanning calorimetry, and thermogravimetric analysis experiments. The protein-surfactant nanoconjugates showed higher thermostability behaviour compared to unmodified avidin, demonstrating distinct conformational ensembles. Small-angle X-ray scattering data showed that with increasing IL concentration, avidin became more compact, interpreted in the context of molecular confinement. To experimentally determine the detailed effects of IL on the energy landscape of avidin, differential scanning fluorimetry and variable temperature circular dichroism spectroscopy were performed. We show that different IL solutions can influence avidin conformation and thermal stability, and we provide insight into the effects of ILs on the folding pathways and thermodynamics of proteins. To further study the effects of ILs on avidin binding and correlate thermostability with conformational heterogeneity, we conducted a binding study. We found the ILs examined inhibited ligand binding in native avidin while enhancing binding in the modified protein, indicating ILs can influence the conformational stability of the distinct proteins differently. Significantly, this work presents a systematic strategy to explore protein conformational space and experimentally detect and characterise 'invisible' rare conformations using ILs.

6.
Commun Chem ; 3(1): 55, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-36703418

RESUMO

Ionic liquids offer exciting possibilities for biocatalysis as solvent properties provide rare opportunities for customizable, energy-efficient bioprocessing. Unfortunately, proteins and enzymes are generally unstable in ionic liquids and several attempts have been made to explain why; however, a comprehensive understanding of the ionic liquid-protein interactions remains elusive. Here, we present an analytical framework (circular dichroism (CD), fluorescence, ultraviolet-visible (UV/Vis) and nuclear magnetic resonance (NMR) spectroscopies, and small-angle X-ray scattering (SAXS)) to probe the interactions, structure, and stability of a model protein (green fluorescent protein (GFP)) in a range (acetate, chloride, triflate) of pyrrolidinium and imidazolium salts. We demonstrate that measuring protein stability requires a similar holistic analytical framework, as opposed to single-technique assessments that provide misleading conclusions. We reveal information on site-specific ionic liquid-protein interactions, revealing that triflate (the least interacting anion) induces a contraction in the protein size that reduces the barrier to unfolding. Robust frameworks such as this are critical to advancing non-aqueous biocatalysis and avoiding pitfalls associated with single-technique investigations.

7.
Nat Chem ; 10(8): 859-865, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29941904

RESUMO

The increasing requirement to produce platform chemicals and fuels from renewable sources means advances in biocatalysis are rapidly becoming a necessity. Biomass is widely used in nature as a source of energy and as chemical building blocks. However, recalcitrance towards traditional chemical processes and solvents provides a significant barrier to widespread utility. Here, by optimizing enzyme solubility in ionic liquids, we have discovered solvent-induced substrate promiscuity of glucosidase, demonstrating an unprecedented example of homogeneous enzyme bioprocessing of cellulose. Specifically, chemical modification of glucosidase for solubilization in ionic liquids can increase thermal stability to up to 137 °C, allowing for enzymatic activity 30 times greater than is possible in aqueous media. These results establish that through a synergistic combination of chemical biology (enzyme modification) and reaction engineering (solvent choice), the biocatalytic capability of enzymes can be intensified: a key step towards the full-scale deployment of industrial biocatalysis.


Assuntos
Biocatálise , Glucosidases/metabolismo , Líquidos Iônicos/metabolismo , Polissacarídeos/metabolismo , Glucosidases/química , Líquidos Iônicos/química , Polissacarídeos/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA