Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Eng ; 55: 12-22, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31189086

RESUMO

Resource Balance Analysis (RBA) is a computational method based on resource allocation, which performs accurate quantitative predictions of whole-cell states (i.e. growth rate, metabolic fluxes, abundances of molecular machines including enzymes) across growth conditions. We present an integrated workflow of RBA together with the Python package RBApy. RBApy builds bacterial RBA models from annotated genome-scale metabolic models by adding descriptions of cellular processes relevant for growth and maintenance. The package includes functions for model simulation and calibration and for interfacing to Escher maps and Proteomaps for visualization. We demonstrate that RBApy faithfully reproduces results obtained by a hand-curated and experimentally validated RBA model for Bacillus subtilis. We also present a calibrated RBA model of Escherichia coli generated from scratch, which obtained excellent fits to measured flux values and enzyme abundances. RBApy makes whole-cell modelling accessible for a wide range of bacterial wild-type and engineered strains, as illustrated with a CO2-fixing Escherichia coli strain. AVAILABILITY: RBApy is available at /https://github.com/SysBioInra/RBApy, under the licence GNU GPL version 3, and runs on Linux, Mac and Windows distributions.


Assuntos
Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Modelos Biológicos , Bacillus subtilis/genética , Escherichia coli/genética
2.
Nucleic Acids Res ; 42(Database issue): D879-81, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24271393

RESUMO

ExoLocator (http://exolocator.eopsf.org) collects in a single place information needed for comparative analysis of protein-coding exons from vertebrate species. The main source of data--the genomic sequences, and the existing exon and homology annotation--is the ENSEMBL database of completed vertebrate genomes. To these, ExoLocator adds the search for ostensibly missing exons in orthologous protein pairs across species, using an extensive computational pipeline to narrow down the search region for the candidate exons and find a suitable template in the other species, as well as state-of-the-art implementations of pairwise alignment algorithms. The resulting complements of exons are organized in a way currently unique to ExoLocator: multiple sequence alignments, both on the nucleotide and on the peptide levels, clearly indicating the exon boundaries. The alignments can be inspected in the web-embedded viewer, downloaded or used on the spot to produce an estimate of conservation within orthologous sets, or functional divergence across paralogues.


Assuntos
Bases de Dados de Proteínas , Éxons , Proteínas/genética , Animais , Genoma Humano , Humanos , Internet , Vertebrados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA