Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Gut ; 62(12): 1777-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23411027

RESUMO

OBJECTIVE: The standard therapy for advanced hepatocellular carcinoma (HCC) is sorafenib, with most patients experiencing disease progression within 6 months. Label-retaining cancer cells (LRCC) represent a novel subpopulation of cancer stem cells (CSC). The objective was to test whether LRCC are resistant to sorafenib. METHODS: We tested human HCC derived LRCC and non-LRCC before and after treatment with sorafenib. RESULTS: LRCC derived from human HCC are relatively resistant to sorafenib. The proportion of LRCC in HCC cell lines is increased after sorafenib while the general population of cancer cells undergoes growth suppression. We show that LRCC demonstrate improved viability and toxicity profiles, and reduced apoptosis, over non-LRCC. We show that after treatment with sorafenib, LRCC upregulate the CSC marker aldehyde dehydrogenase 1 family, wingless-type MMTV-integration-site family, cell survival and proliferation genes, and downregulate apoptosis, cell cycle arrest, cell adhesion and stem cells differentiation genes. This phenomenon was accompanied by non-uniform activation of specific isoforms of the sorafenib target proteins extracellular-signal-regulated kinases and v-akt-murine-thymoma-viral-oncogene homologue (AKT) in LRCC but not in non-LRCC. A molecular pathway map for sorafenib treated LRCC is proposed. CONCLUSIONS: Our results suggest that HCC derived LRCC are relatively resistant to sorafenib. Since LRCC can generate tumours with as few as 10 cells, our data suggest a potential role for these cells in disease recurrence. Further investigation of this phenomenon might provide novel insights into cancer biology, cancer recurrence and drug resistance with important implications for the development of novel cancer therapies based on targeting LRCC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Niacinamida/análogos & derivados , Compostos de Fenilureia/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/citologia , Linhagem Celular Tumoral/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Humanos , Niacinamida/uso terapêutico , Proteína Oncogênica v-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sorafenibe , Células-Tronco/efeitos dos fármacos
2.
Stem Cells Dev ; 20(10): 1649-58, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21294632

RESUMO

The ability to retain DNA labels over time is a property proposed to be associated with adult stem cells. Recently, label retaining cells (LRC) were indentified in cancer. LRC were suggested to be the result of either slow-cycling or asymmetric-cell-division with nonrandom-chromosomal-cosegregation (ACD-NRCC). ACD-NRCC is proposed to segregate the older template DNA strands into daughter stem cells and newly synthesized DNA into daughter cells destined for differentiation. The existence of cells undergoing ACD-NRCC and the stem-like nature of LRC remain controversial. Currently, to detect LRC and ACD-NRCC, cells need to undergo fixation. Therefore, testing the stem-cell nature and other functional traits of LRC and cells undergoing ACD-NRCC has been limited. Here, we show a method for labeling DNA with single and dual-color nucleotides in live human liver cancer cells avoiding the need for fixation. We describe a novel methodology for both the isolation of live LRC and cells undergoing ACD-NRCC via fluorescence-activated cell sorting with confocal microscopy validation. This has the potential to be a powerful adjunct to stem-cell and cancer research.


Assuntos
Divisão Celular Assimétrica , Separação Celular/métodos , Segregação de Cromossomos , Neoplasias/patologia , Coloração e Rotulagem , Sobrevivência Celular , Cor , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Neoplasias/metabolismo , Nucleotídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA