Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proteins ; 86 Suppl 1: 202-214, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314274

RESUMO

Experimental data offers empowering constraints for structure prediction. These constraints can be used to filter equivalently scored models or more powerfully within optimization functions toward prediction. In CASP12, Small Angle X-ray Scattering (SAXS) and Cross-Linking Mass Spectrometry (CLMS) data, measured on an exemplary set of novel fold targets, were provided to the CASP community of protein structure predictors. As solution-based techniques, SAXS and CLMS can efficiently measure states of the full-length sequence in its native solution conformation and assembly. However, this experimental data did not substantially improve prediction accuracy judged by fits to crystallographic models. One issue, beyond intrinsic limitations of the algorithms, was a disconnect between crystal structures and solution-based measurements. Our analyses show that many targets had substantial percentages of disordered regions (up to 40%) or were multimeric or both. Thus, solution measurements of flexibility and assembly support variations that may confound prediction algorithms trained on crystallographic data and expecting globular fully-folded monomeric proteins. Here, we consider the CLMS and SAXS data collected, the information in these solution measurements, and the challenges in incorporating them into computational prediction. As improvement opportunities were only partly realized in CASP12, we provide guidance on how data from the full-length biological unit and the solution state can better aid prediction of the folded monomer or subunit. We furthermore describe strategic integrations of solution measurements with computational prediction programs with the aim of substantially improving foundational knowledge and the accuracy of computational algorithms for biologically-relevant structure predictions for proteins in solution.


Assuntos
Biologia Computacional/métodos , Reagentes de Ligações Cruzadas/química , Espectrometria de Massas/métodos , Modelos Moleculares , Conformação Proteica , Proteínas/química , Espalhamento a Baixo Ângulo , Algoritmos , Humanos , Dobramento de Proteína , Difração de Raios X
2.
Methods Mol Biol ; 2444: 43-68, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35290631

RESUMO

Structures provide a critical breakthrough step for biological analyses, and small angle X-ray scattering (SAXS) is a powerful structural technique to study dynamic DNA repair proteins. As toxic and mutagenic repair intermediates need to be prevented from inadvertently harming the cell, DNA repair proteins often chaperone these intermediates through dynamic conformations, coordinated assemblies, and allosteric regulation. By measuring structural conformations in solution for both proteins, DNA, RNA, and their complexes, SAXS provides insight into initial DNA damage recognition, mechanisms for validation of their substrate, and pathway regulation. Here, we describe exemplary SAXS analyses of a DNA damage response protein spanning from what can be derived directly from the data to obtaining super resolution through the use of SAXS selection of atomic models. We outline strategies and tactics for practical SAXS data collection and analysis. Making these structural experiments in reach of any basic and clinical researchers who have protein, SAXS data can readily be collected at government-funded synchrotrons, typically at no cost for academic researchers. In addition to discussing how SAXS complements and enhances cryo-electron microscopy, X-ray crystallography, NMR, and computational modeling, we furthermore discuss taking advantage of recent advances in protein structure prediction in combination with SAXS analysis.


Assuntos
Reparo do DNA , Microscopia Crioeletrônica , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA