Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(7): 1649-1663.e5, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37236188

RESUMO

Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5Δ32/Δ32) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV+, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.5 years after stopping ART, in other cases, it was insufficient without protection of engrafting cells afforded by CCR5-deficiency, as CCR5-tropic virus spread to donor CD4+ T cells despite full ART suppression. These data demonstrate the individual contributions of allogeneic immunity and CCR5 deficiency to HIV cure and support defining targets of alloimmunity for curative strategies independent of HSCT.


Assuntos
Infecções por HIV , Transplante de Células-Tronco Hematopoéticas , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Macaca fascicularis , Carga Viral
3.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175977

RESUMO

CRISPR/Cas systems are some of the most promising tools for therapeutic genome editing. The use of these systems is contingent on the optimal designs of guides and homology-directed repair (HDR) templates. While this design can be achieved in silico, validation and further optimization are usually performed with the help of reporter systems. Here, we describe a novel reporter system, termed BETLE, that allows for the fast, sensitive, and cell-specific detection of genome editing and template-specific HDR by encoding multiple reporter proteins in different open-reading frames. Out-of-frame non-homologous end joining (NHEJ) leads to the expression of either secretable NanoLuc luciferase, enabling a highly sensitive and low-cost analysis of editing, or fluorescent mTagBFP2, allowing for the enumeration and tissue-specific localization of genome-edited cells. BETLE includes a site to validate CRISPR/Cas systems for a sequence-of-interest, making it broadly adaptable. We evaluated BETLE using a defective moxGFP with a 39-base-pair deletion and showed spCas9, saCas9, and asCas12a editing as well as sequence-specific HDR and the repair of moxGFP in cell lines with single and multiple reporter integrants. Taken together, these data show that BETLE allows for the rapid detection and optimization of CRISPR/Cas genome editing and HDR in vitro and represents a state-of the art tool for future applications in vivo.


Assuntos
Sistemas CRISPR-Cas , Quebras de DNA de Cadeia Dupla , Sistemas CRISPR-Cas/genética , Edição de Genes , Reparo do DNA por Junção de Extremidades , Genoma
4.
J Immunol ; 204(8): 2169-2176, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32161099

RESUMO

Currently 247 million people are living with chronic hepatitis B virus infection (CHB), and the development of novel curative treatments is urgently needed. Immunotherapy is an attractive approach to treat CHB, yet therapeutic approaches to augment the endogenous hepatitis B virus (HBV)-specific T cell response in CHB patients have demonstrated little success. In this study, we show that strain 68-1 rhesus macaque (RM) CMV vaccine vectors expressing HBV Ags engender HBV-specific CD8+ T cells unconventionally restricted by MHC class II and the nonclassical MHC-E molecule in RM. Surface staining of human donor and RM primary hepatocytes (PH) ex vivo revealed the majority of PH expressed MHC-E but not MHC class II. HBV-specific, MHC-E-restricted CD8+ T cells from RM vaccinated with RM CMV vaccine vectors expressing HBV Ags recognized HBV-infected PH from both human donor and RM. These results provide proof-of-concept that MHC-E-restricted CD8+ T cells could be harnessed for the treatment of CHB, either through therapeutic vaccination or adoptive immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Hepatócitos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Animais , Hepatite B Crônica/virologia , Hepatócitos/virologia , Macaca mulatta
5.
J Clin Apher ; 36(1): 67-77, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32941672

RESUMO

Macaques are physiologically relevant animal models of human immunology and infectious disease that have provided key insights and advanced clinical treatment in transplantation, vaccinology, and HIV/AIDS. However, the small size of macaques is a stumbling block for studies requiring large numbers of cells, such as hematopoietic stem cells (HSCs) for transplantation, antigen-specific lymphocytes for in-depth immunological analysis, and latently-infected CD4+ T-cells for HIV cure studies. Here, we provide a detailed protocol for collection of large numbers of HSCs and T-cells from cynomolgus macaques as small as 3 kg using the Terumo Spectra Optia apheresis system, yielding an average of 5.0 × 109 total nucleated cells from mobilized animals and 1.2 × 109 total nucleated cells from nonmobilized animals per procedure. This report provides sufficient detail to adapt this apheresis technique at other institutions, which will facilitate more efficient and detailed analysis of HSCs and their progeny blood cells.


Assuntos
Remoção de Componentes Sanguíneos/métodos , Células-Tronco Hematopoéticas/citologia , Linfócitos T/citologia , Animais , Benzilaminas/farmacologia , Creatinina/sangue , Ciclamos/farmacologia , Feminino , Fator Estimulador de Colônias de Granulócitos/farmacologia , Mobilização de Células-Tronco Hematopoéticas/métodos , Macaca fascicularis , Masculino
6.
Xenotransplantation ; 27(4): e12578, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31930750

RESUMO

Allogeneic hematopoietic stem cell transplantation (HSCT) and xenotransplantation are accompanied by viral reactivations and virus-associated complications resulting from immune deficiency. Here, in a Mauritian cynomolgus macaque model of fully MHC-matched allogeneic HSCT, we report reactivations of cynomolgus polyomavirus, lymphocryptovirus, and cytomegalovirus, macaque viruses analogous to HSCT-associated human counterparts BK virus, Epstein-Barr virus, and human cytomegalovirus. Viral replication in recipient macaques resulted in characteristic disease manifestations observed in HSCT patients, such as polyomavirus-associated hemorrhagic cystitis and tubulointerstitial nephritis or lymphocryptovirus-associated post-transplant lymphoproliferative disorder. However, in most cases, the reconstituted immune system, alone or in combination with short-term pharmacological intervention, exerted control over viral replication, suggesting engraftment of functional donor-derived immunity. Indeed, the donor-derived reconstituted immune systems of two long-term engrafted HSCT recipient macaques responded to live attenuated yellow fever 17D vaccine (YFV 17D) indistinguishably from untransplanted controls, mounting 17D-targeted neutralizing antibody responses and clearing YFV 17D within 14 days. Together, these data demonstrate that this macaque model of allogeneic HSCT recapitulates clinical situations of opportunistic viral infections in transplant patients and provides a pre-clinical model to test novel prophylactic and therapeutic modalities.


Assuntos
Modelos Animais de Doenças , Transplante de Células-Tronco Hematopoéticas , Infecções Oportunistas , Viroses , Aloenxertos , Animais , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Macaca fascicularis , Infecções Oportunistas/virologia
7.
J Immunol ; 200(1): 49-60, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150562

RESUMO

MHC-E is a highly conserved nonclassical MHC class Ib molecule that predominantly binds and presents MHC class Ia leader sequence-derived peptides for NK cell regulation. However, MHC-E also binds pathogen-derived peptide Ags for presentation to CD8+ T cells. Given this role in adaptive immunity and its highly monomorphic nature in the human population, HLA-E is an attractive target for novel vaccine and immunotherapeutic modalities. Development of HLA-E-targeted therapies will require a physiologically relevant animal model that recapitulates HLA-E-restricted T cell biology. In this study, we investigated MHC-E immunobiology in two common nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM). Compared to humans and MCM, RM expressed a greater number of MHC-E alleles at both the population and individual level. Despite this difference, human, RM, and MCM MHC-E molecules were expressed at similar levels across immune cell subsets, equivalently upregulated by viral pathogens, and bound and presented identical peptides to CD8+ T cells. Indeed, SIV-specific, Mamu-E-restricted CD8+ T cells from RM recognized antigenic peptides presented by all MHC-E molecules tested, including cross-species recognition of human and MCM SIV-infected CD4+ T cells. Thus, MHC-E is functionally conserved among humans, RM, and MCM, and both RM and MCM represent physiologically relevant animal models of HLA-E-restricted T cell immunobiology.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Células Matadoras Naturais/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Apresentação de Antígeno , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Células Cultivadas , Sequência Conservada/genética , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Macaca fascicularis , Macaca mulatta , Modelos Animais , Peptídeos/imunologia , Peptídeos/metabolismo , Antígenos HLA-E
8.
Nature ; 502(7469): 100-4, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24025770

RESUMO

Established infections with the human and simian immunodeficiency viruses (HIV and SIV, respectively) are thought to be permanent with even the most effective immune responses and antiretroviral therapies only able to control, but not clear, these infections. Whether the residual virus that maintains these infections is vulnerable to clearance is a question of central importance to the future management of millions of HIV-infected individuals. We recently reported that approximately 50% of rhesus macaques (RM; Macaca mulatta) vaccinated with SIV protein-expressing rhesus cytomegalovirus (RhCMV/SIV) vectors manifest durable, aviraemic control of infection with the highly pathogenic strain SIVmac239 (ref. 5). Here we show that regardless of the route of challenge, RhCMV/SIV vector-elicited immune responses control SIVmac239 after demonstrable lymphatic and haematogenous viral dissemination, and that replication-competent SIV persists in several sites for weeks to months. Over time, however, protected RM lost signs of SIV infection, showing a consistent lack of measurable plasma- or tissue-associated virus using ultrasensitive assays, and a loss of T-cell reactivity to SIV determinants not in the vaccine. Extensive ultrasensitive quantitative PCR and quantitative PCR with reverse transcription analyses of tissues from RhCMV/SIV vector-protected RM necropsied 69-172 weeks after challenge did not detect SIV RNA or DNA sequences above background levels, and replication-competent SIV was not detected in these RM by extensive co-culture analysis of tissues or by adoptive transfer of 60 million haematolymphoid cells to naive RM. These data provide compelling evidence for progressive clearance of a pathogenic lentiviral infection, and suggest that some lentiviral reservoirs may be susceptible to the continuous effector memory T-cell-mediated immune surveillance elicited and maintained by cytomegalovirus vectors.


Assuntos
Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Animais , Citomegalovirus/genética , Citomegalovirus/imunologia , Feminino , Macaca mulatta , Masculino , Dados de Sequência Molecular , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Fatores de Tempo , Vacinas Atenuadas/imunologia , Carga Viral , Replicação Viral/fisiologia
9.
PLoS Pathog ; 12(8): e1005868, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27580123

RESUMO

The natural killer cell receptor NKG2D activates NK cells by engaging one of several ligands (NKG2DLs) belonging to either the MIC or ULBP families. Human cytomegalovirus (HCMV) UL16 and UL142 counteract this activation by retaining NKG2DLs and US18 and US20 act via lysomal degradation but the importance of NK cell evasion for infection is unknown. Since NKG2DLs are highly conserved in rhesus macaques, we characterized how NKG2DL interception by rhesus cytomegalovirus (RhCMV) impacts infection in vivo. Interestingly, RhCMV lacks homologs of UL16 and UL142 but instead employs Rh159, the homolog of UL148, to prevent NKG2DL surface expression. Rh159 resides in the endoplasmic reticulum and retains several NKG2DLs whereas UL148 does not interfere with NKG2DL expression. Deletion of Rh159 releases human and rhesus MIC proteins, but not ULBPs, from retention while increasing NK cell stimulation by infected cells. Importantly, RhCMV lacking Rh159 cannot infect CMV-naïve animals unless CD8+ cells, including NK cells, are depleted. However, infection can be rescued by replacing Rh159 with HCMV UL16 suggesting that Rh159 and UL16 perform similar functions in vivo. We therefore conclude that cytomegaloviral interference with NK cell activation is essential to establish but not to maintain chronic infection.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Evasão da Resposta Imune , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Animais , Humanos , Células K562 , Macaca fascicularis , Glicoproteínas de Membrana/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Proteínas Virais/imunologia
10.
PLoS Pathog ; 12(1): e1005349, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26741490

RESUMO

HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Receptores Imunológicos/imunologia , Animais , Antígeno B7-H1/imunologia , Separação Celular , DNA Viral/análise , Progressão da Doença , Citometria de Fluxo , Humanos , Ativação Linfocitária/imunologia , Macaca mulatta , RNA Viral/análise , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia
11.
PLoS Pathog ; 12(11): e1006014, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27829026

RESUMO

Cytomegaloviruses (CMV) are highly species-specific due to millennia of co-evolution and adaptation to their host, with no successful experimental cross-species infection in primates reported to date. Accordingly, full genome phylogenetic analysis of multiple new CMV field isolates derived from two closely related nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM), revealed distinct and tight lineage clustering according to the species of origin, with MCM CMV isolates mirroring the limited genetic diversity of their primate host that underwent a population bottleneck 400 years ago. Despite the ability of Rhesus CMV (RhCMV) laboratory strain 68-1 to replicate efficiently in MCM fibroblasts and potently inhibit antigen presentation to MCM T cells in vitro, RhCMV 68-1 failed to productively infect MCM in vivo, even in the absence of host CD8+ T and NK cells. In contrast, RhCMV clone 68-1.2, genetically repaired to express the homologues of the HCMV anti-apoptosis gene UL36 and epithelial cell tropism genes UL128 and UL130 absent in 68-1, efficiently infected MCM as evidenced by the induction of transgene-specific T cells and virus shedding. Recombinant variants of RhCMV 68-1 and 68-1.2 revealed that expression of either UL36 or UL128 together with UL130 enabled productive MCM infection, indicating that multiple layers of cross-species restriction operate even between closely related hosts. Cumulatively, these results implicate cell tropism and evasion of apoptosis as critical determinants of CMV transmission across primate species barriers, and extend the macaque model of human CMV infection and immunology to MCM, a nonhuman primate species with uniquely simplified host immunogenetics.


Assuntos
Infecções por Citomegalovirus/transmissão , Citomegalovirus/genética , Modelos Animais de Doenças , Macaca fascicularis/virologia , Macaca mulatta/virologia , Animais , Infecções por Citomegalovirus/genética , DNA Viral/análise , DNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Especificidade da Espécie
12.
PLoS Pathog ; 12(12): e1006048, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27926931

RESUMO

Within the first three weeks of human immunodeficiency virus (HIV) infection, virus replication peaks in peripheral blood. Despite the critical, causal role of virus replication in determining transmissibility and kinetics of progression to acquired immune deficiency syndrome (AIDS), there is limited understanding of the conditions required to transform the small localized transmitted founder virus population into a large and heterogeneous systemic infection. Here we show that during the hyperacute "pre-peak" phase of simian immunodeficiency virus (SIV) infection in macaques, high levels of microbial DNA transiently translocate into peripheral blood. This, heretofore unappreciated, hyperacute-phase microbial translocation was accompanied by sustained reduction of lipopolysaccharide (LPS)-specific antibody titer, intestinal permeability, increased abundance of CD4+CCR5+ T cell targets of virus replication, and T cell activation. To test whether increasing gastrointestinal permeability to cause microbial translocation would amplify viremia, we treated two SIV-infected macaque 'elite controllers' with a short-course of dextran sulfate sodium (DSS)-stimulating a transient increase in microbial translocation and a prolonged recrudescent viremia. Altogether, our data implicates translocating microbes as amplifiers of immunodeficiency virus replication that effectively undermine the host's capacity to contain infection.


Assuntos
DNA Viral/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Viremia/virologia , Animais , Progressão da Doença , Feminino , Citometria de Fluxo , Imunofenotipagem , Inflamação/imunologia , Inflamação/virologia , Ativação Linfocitária/imunologia , Macaca fascicularis , Masculino , Reação em Cadeia da Polimerase , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Replicação Viral/imunologia
13.
J Immunol ; 196(7): 3064-78, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26944928

RESUMO

Advancement in immunogen selection and vaccine design that will rapidly elicit a protective Ab response is considered critical for HIV vaccine protective efficacy. Vaccine-elicited Ab responses must therefore have the capacity to prevent infection by neutralization-resistant phenotypes of transmitted/founder (T/F) viruses that establish infection in humans. Most vaccine candidates to date have been ineffective at generating Abs that neutralize T/F or early variants. In this study, we report that coimmunizing rhesus macaques with HIV-1 gp160 DNA and gp140 trimeric protein selected from native envelope gene sequences (envs) induced neutralizing Abs against Tier 2 autologous viruses expressing cognate envelope (Env). The Env immunogens were selected from envs emerging during the earliest stages of neutralization breadth developing within the first 2 years of infection in two clade B-infected human subjects. Moreover, the IgG responses in macaques emulated the targeting to specific regions of Env known to be associated with autologous and heterologous neutralizing Abs developed within the human subjects. Furthermore, we measured increasing affinity of macaque polyclonal IgG responses over the course of the immunization regimen that correlated with Tier 1 neutralization. In addition, we report firm correlations between Tier 2 autologous neutralization and Tier 1 heterologous neutralization, as well as overall TZM-bl breadth scores. Additionally, the activation of Env-specific follicular helper CD4 T cells in lymphocytes isolated from inguinal lymph nodes of vaccinated macaques correlated with Tier 2 autologous neutralization. These results demonstrate the potential for native Env derived from subjects at the time of neutralization broadening as effective HIV vaccine elements.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Afinidade de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Epitopos/imunologia , Imunização , Esquemas de Imunização , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Tecido Linfoide/imunologia , Macaca mulatta , Testes de Neutralização , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinação
14.
J Immunol ; 193(11): 5576-83, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25348621

RESUMO

The T cell Ig- and mucin domain-containing molecule-3 (Tim-3) negative immune checkpoint receptor demarcates functionally exhausted CD8(+) T cells arising from chronic stimulation in viral infections like HIV. Tim-3 blockade leads to improved antiviral CD8(+) T cell responses in vitro and, therefore, represents a novel intervention strategy to restore T cell function in vivo and protect from disease progression. However, the Tim-3 pathway in the physiologically relevant rhesus macaque SIV model of AIDS remains uncharacterized. We report that Tim-3(+)CD8(+) T cell frequencies are significantly increased in lymph nodes, but not in peripheral blood, in SIV-infected animals. Tim-3(+)PD-1(+)CD8(+) T cells are similarly increased during SIV infection and positively correlate with SIV plasma viremia. Tim-3 expression was found primarily on effector memory CD8(+) T cells in all tissues examined. Tim-3(+)CD8(+) T cells have lower Ki-67 content and minimal cytokine responses to SIV compared with Tim-3(-)CD8(+) T cells. During acute-phase SIV replication, Tim-3 expression peaked on SIV-specific CD8(+) T cells by 2 wk postinfection and then rapidly diminished, irrespective of mutational escape of cognate Ag, suggesting non-TCR-driven mechanisms for Tim-3 expression. Thus, rhesus Tim-3 in SIV infection partially mimics human Tim-3 in HIV infection and may serve as a novel model for targeted studies focused on rejuvenating HIV-specific CD8(+) T cell responses.


Assuntos
Síndrome da Imunodeficiência Adquirida/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Proteínas de Membrana/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Síndrome da Imunodeficiência Adquirida/terapia , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/virologia , Proliferação de Células , Células Cultivadas , Citotoxicidade Imunológica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Memória Imunológica , Macaca mulatta , Proteínas de Membrana/genética , Dados de Sequência Molecular , Terapia de Alvo Molecular , Receptor de Morte Celular Programada 1/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Carga Viral , Replicação Viral
15.
J Virol ; 88(6): 3598-604, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371068

RESUMO

Compensatory mutations offset fitness defects resulting from CD8(+) T lymphocyte (CD8(TL))-mediated escape, but their impact on viral evolution following transmission to naive hosts remains unclear. Here, we investigated the reversion kinetics of Gag(181-189)CM9 CD8(TL) escape-associated compensatory mutations in simian immunodeficiency virus (SIV)-infected macaques. Preexisting compensatory mutations did not result in acute-phase escape of the SIVmac239 CD8(TL) epitope Gag(181-189)CM9 and instead required a tertiary mutation for stabilization in the absence of Gag(181-189)CM9 escape mutations. Therefore, transmitted compensatory mutations do not necessarily predict rapid CD8(TL) escape.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Mutação , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/virologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Macaca mulatta , Dados de Sequência Molecular , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética
16.
J Virol ; 87(13): 7382-92, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23616658

RESUMO

The live attenuated simian immunodeficiency virus (SIV) SIVmac239Δnef is the most effective SIV/human immunodeficiency virus (HIV) vaccine in preclinical testing. An understanding of the mechanisms responsible for protection may provide important insights for the development of HIV vaccines. Leveraging the uniquely restricted genetic diversity of Mauritian cynomolgus macaques, we performed adoptive transfers between major histocompatibility complex (MHC)-matched animals to assess the role of cellular immunity in SIVmac239Δnef protection. We vaccinated and mock vaccinated donor macaques and then harvested between 1.25 × 10(9) and 3.0 × 10(9) mononuclear cells from multiple tissues for transfer into 12 naive recipients, followed by challenge with pathogenic SIVmac239. Fluorescently labeled donor cells were detectable for at least 7 days posttransfer and trafficked to multiple tissues, including lung, lymph nodes, and other mucosal tissues. There was no difference between recipient macaques' peak or postpeak plasma viral loads. A very modest difference in viral loads during the chronic phase between vaccinated animal cell recipients and mock-vaccinated animal cell recipients did not reach significance (P = 0.12). Interestingly, the SIVmac239 challenge virus accumulated escape mutations more rapidly in animals that received cells from vaccinated donors. These results may suggest that adoptive transfers influenced the course of infection despite the lack of significant differences in the viral loads among animals that received cells from vaccinated and mock-vaccinated donor animals.


Assuntos
Imunidade Celular/imunologia , Macaca fascicularis/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Carga Viral/imunologia , Vacinas Virais/imunologia , Reação de Fase Aguda/imunologia , Transferência Adotiva , Animais , Sequência de Bases , Biologia Computacional , ELISPOT , Citometria de Fluxo , Fluorescência , Leucócitos Mononucleares/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Dados de Sequência Molecular , Análise de Sequência de DNA , Vírus da Imunodeficiência Símia/genética
17.
J Virol ; 87(11): 6073-80, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23536679

RESUMO

APOBEC3 proteins mediate potent antiretroviral activity by hypermutating the retroviral genome during reverse transcription. To counteract APOBEC3 and gain a replicative advantage, lentiviruses such as human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) have evolved the Vif protein, which targets APOBEC3 proteins for proteasomal degradation. However, the proteasome plays a critical role in the generation of T cell peptide epitopes. Whether Vif-mediated destruction of APOBEC3 proteins leads to the generation and presentation of APOBEC3-derived T cell epitopes on the surfaces of lentivirus-infected cells remains unknown. Here, using peptides derived from multiple Vif-sensitive APOBEC3 proteins, we identified APOBEC3-specific T cell responses in both HIV-1-infected patients and SIV-infected rhesus macaques. These results raise the possibility that these T cell responses may be part of the larger antiretroviral immune response.


Assuntos
Linfócitos T CD8-Positivos/virologia , Citidina Desaminase/imunologia , Citosina Desaminase/imunologia , Infecções por HIV/enzimologia , HIV-1/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/enzimologia , Vírus da Imunodeficiência Símia/fisiologia , Desaminase APOBEC-3G , Adulto , Animais , Linfócitos T CD8-Positivos/imunologia , Citidina Desaminase/genética , Citosina Desaminase/genética , Feminino , Produtos do Gene vif/genética , Produtos do Gene vif/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , Humanos , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia
18.
J Immunol ; 188(7): 3364-70, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22387557

RESUMO

A small number of HIV-infected individuals known as elite controllers experience low levels of chronic phase viral replication and delayed progression to AIDS. Specific HLA class I alleles are associated with elite control, implicating CD8(+) T lymphocytes in the establishment of these low levels of viral replication. Most HIV-infected individuals that express protective HLA class I alleles, however, do not control viral replication. Approximately 50% of Mamu-B*00801(+) Indian rhesus macaques control SIVmac239 replication in the chronic phase in a manner that resembles elite control in humans. We followed both the immune response and viral evolution in SIV-infected Mamu-B*00801(+) animals to better understand the role of CD8(+) T lymphocytes during the acute phase of viral infection, when viral control status is determined. The virus escaped from immunodominant Vif and Nef Mamu-B*00801-restricted CD8(+) T lymphocyte responses during the critical early weeks of acute infection only in progressor animals that did not control viral replication. Thus, early CD8(+) T lymphocyte escape is a hallmark of Mamu-B*00801(+) macaques who do not control viral replication. By contrast, virus in elite controller macaques showed little evidence of variation in epitopes recognized by immunodominant CD8(+) T lymphocytes, implying that these cells play a role in viral control.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Evasão da Resposta Imune/imunologia , Macaca mulatta/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Subpopulações de Linfócitos T/imunologia , Viremia/imunologia , Sequência de Aminoácidos , Animais , Sequência Consenso , Progressão da Doença , Resistência à Doença/genética , Resistência à Doença/imunologia , Produtos do Gene nef/imunologia , Produtos do Gene vif/imunologia , Genes nef , Genes vif , Antígenos de Histocompatibilidade Classe I/genética , Evasão da Resposta Imune/genética , Epitopos Imunodominantes/imunologia , Macaca mulatta/genética , Dados de Sequência Molecular , RNA Viral/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/fisiologia , Especificidade do Receptor de Antígeno de Linfócitos T , Fatores de Tempo , Carga Viral , Viremia/genética
19.
Vaccines (Basel) ; 12(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38400138

RESUMO

Adenoviral vectors based on the human adenovirus species C serotype 5 (HAdV-C5) are commonly used for vector-based gene therapies and vaccines. In the preclinical stages of development, their safety and efficacy are often validated in suitable animal models. However, pre-existing neutralizing antibodies may severely influence study outcomes. Here, we generated a new HAdV-C5-based reporter vector and established a high-throughput screening assay for the multivalent detection of HAdV-C5-neutralizing antibodies in serum. We screened the sera of rhesus macaques at different primate centers, and of rabbits, horses, cats, and dogs, showing that HAdV-C5-neutralizing antibodies can be found in all species, albeit at different frequencies. Our results emphasize the need to prescreen model animals in HAdV-C5-based studies.

20.
Viruses ; 16(2)2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400071

RESUMO

Metabolic-dysfunction-associated fatty liver disease (MAFLD) is a major cause of morbidity and mortality in HIV-infected individuals, even those receiving optimal antiretroviral therapy. Here, we utilized the SIV rhesus macaque model and advanced laparoscopic techniques for longitudinal collection of liver tissue to elucidate the timing of pathologic changes. The livers of both SIV-infected (N = 9) and SIV-naïve uninfected (N = 8) macaques were biopsied and evaluated at four time points (weeks -4, 2, 6, and 16-20 post-infection) and at necropsy (week 32). SIV DNA within the macaques' livers varied by over 4 logs at necropsy, and liver SIV DNA significantly correlated with SIV RNA in the plasma throughout the study. Acute phase liver pathology (2 weeks post-infection) was characterized by evidence for fat accumulation (microvesicular steatosis), a transient elevation in both AST and cholesterol levels within the serum, and increased hepatic expression of the PPARA gene associated with cholesterol metabolism and beta oxidation. By contrast, the chronic phase of the SIV infection (32 weeks post-infection) was associated with sinusoidal dilatation, while steatosis resolved and concentrations of AST and cholesterol remained similar to those in uninfected macaques. These findings suggest differential liver pathologies associated with the acute and chronic phases of infection and the possibility that therapeutic interventions targeting metabolic function may benefit liver health in people newly diagnosed with HIV.


Assuntos
Fígado Gorduroso , Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Macaca mulatta , Infecções por HIV/complicações , Hepatócitos/metabolismo , DNA , Colesterol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA