Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 565(7737): 106-111, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30568301

RESUMO

Specificity of interactions between two DNA strands, or between protein and DNA, is often achieved by varying bases or side chains coming off the DNA or protein backbone-for example, the bases participating in Watson-Crick pairing in the double helix, or the side chains contacting DNA in TALEN-DNA complexes. By contrast, specificity of protein-protein interactions usually involves backbone shape complementarity1, which is less modular and hence harder to generalize. Coiled-coil heterodimers are an exception, but the restricted geometry of interactions across the heterodimer interface (primarily at the heptad a and d positions2) limits the number of orthogonal pairs that can be created simply by varying side-chain interactions3,4. Here we show that protein-protein interaction specificity can be achieved using extensive and modular side-chain hydrogen-bond networks. We used the Crick generating equations5 to produce millions of four-helix backbones with varying degrees of supercoiling around a central axis, identified those accommodating extensive hydrogen-bond networks, and used Rosetta to connect pairs of helices with short loops and to optimize the remainder of the sequence. Of 97 such designs expressed in Escherichia coli, 65 formed constitutive heterodimers, and the crystal structures of four designs were in close agreement with the computational models and confirmed the designed hydrogen-bond networks. In cells, six heterodimers were fully orthogonal, and in vitro-following mixing of 32 chains from 16 heterodimer designs, denaturation in 5 M guanidine hydrochloride and reannealing-almost all of the interactions observed by native mass spectrometry were between the designed cognate pairs. The ability to design orthogonal protein heterodimers should enable sophisticated protein-based control logic for synthetic biology, and illustrates that nature has not fully explored the possibilities for programmable biomolecular interaction modalities.


Assuntos
Simulação por Computador , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas/química , Proteínas/metabolismo , DNA/química , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Guanidina/farmacologia , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Desnaturação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Proteínas/genética
2.
Mol Cell Proteomics ; 22(2): 100486, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549589

RESUMO

Spatial separation of ions in the gas phase, providing information about their size as collisional cross-sections, can readily be achieved through ion mobility. The timsTOF Pro (Bruker Daltonics) series combines a trapped ion mobility device with a quadrupole, collision cell, and a time-of-flight analyzer to enable the analysis of ions at great speed. Here, we show that the timsTOF Pro is capable of physically separating N-glycopeptides from nonmodified peptides and producing high-quality fragmentation spectra, both beneficial for glycoproteomics analyses of complex samples. The glycan moieties enlarge the size of glycopeptides compared with nonmodified peptides, yielding a clear cluster in the mobilogram that, next to increased dynamic range from the physical separation of glycopeptides and nonmodified peptides, can be used to make an effective selection filter for directing the mass spectrometer to analytes of interest. We designed an approach where we (1) focused on a region of interest in the ion mobilogram and (2) applied stepped collision energies to obtain informative glycopeptide tandem mass spectra on the timsTOF Pro:glyco-polygon-stepped collision energy-parallel accumulation serial fragmentation. This method was applied to selected glycoproteins, human plasma- and neutrophil-derived glycopeptides. We show that the achieved physical separation in the region of interest allows for improved extraction of information from the samples, even at shorter liquid chromatography gradients of 15 min. We validated our approach on human neutrophil and plasma samples of known makeup, in which we captured the anticipated glycan heterogeneity (paucimannose, phosphomannose, high mannose, hybrid and complex glycans) from plasma and neutrophil samples at the expected abundances. As the method is compatible with off-the-shelve data acquisition routines and data analysis software, it can readily be applied by any laboratory with a timsTOF Pro and is reproducible as demonstrated by a comparison between two laboratories.


Assuntos
Glicopeptídeos , Peptídeos , Humanos , Glicopeptídeos/análise , Espectrometria de Massas em Tandem/métodos , Polissacarídeos/química , Íons
3.
Plant Cell Environ ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488802

RESUMO

Understanding the short-term responses of mesophyll conductance (gm ) and stomatal conductance (gsc ) to environmental changes remains a challenging yet central aspect of plant physiology. This review synthesises our current knowledge of these short-term responses, which underpin CO2 diffusion within leaves. Recent methodological advances in measuring gm using online isotopic discrimination and chlorophyll fluorescence have improved our confidence in detecting short-term gm responses, but results need to be carefully evaluated. Environmental factors like vapour pressure deficit and CO2 concentration indirectly impact gm through gsc changes, highlighting some of the complex interactions between the two parameters. Evidence suggests that short-term responses of gm are not, or at least not fully, mechanistically linked to changes in gsc , cautioning against using gsc as a reliable proxy for gm . The overarching challenge lies in unravelling the mechanistic basis of short-term gm responses, which will contribute to the development of accurate models bridging laboratory insights with broader ecological implications. Addressing these gaps in understanding is crucial for refining predictions of gm behaviour under changing environmental conditions.

4.
Plant Cell Environ ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321805

RESUMO

Gas exchange measurements enable mechanistic insights into the processes that underpin carbon and water fluxes in plant leaves which in turn inform understanding of related processes at a range of scales from individual cells to entire ecosytems. Given the importance of photosynthesis for the global climate discussion it is important to (a) foster a basic understanding of the fundamental principles underpinning the experimental methods used by the broad community, and (b) ensure best practice and correct data interpretation within the research community. In this review, we outline the biochemical and biophysical parameters of photosynthesis that can be investigated with gas exchange measurements and we provide step-by-step guidance on how to reliably measure them. We advise on best practices for using gas exchange equipment and highlight potential pitfalls in experimental design and data interpretation. The Supporting Information contains exemplary data sets, experimental protocols and data-modelling routines. This review is a community effort to equip both the experimental researcher and the data modeller with a solid understanding of the theoretical basis of gas-exchange measurements, the rationale behind different experimental protocols and the approaches to data interpretation.

5.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074752

RESUMO

Protein nanomaterial design is an emerging discipline with applications in medicine and beyond. A long-standing design approach uses genetic fusion to join protein homo-oligomer subunits via α-helical linkers to form more complex symmetric assemblies, but this method is hampered by linker flexibility and a dearth of geometric solutions. Here, we describe a general computational method for rigidly fusing homo-oligomer and spacer building blocks to generate user-defined architectures that generates far more geometric solutions than previous approaches. The fusion junctions are then optimized using Rosetta to minimize flexibility. We apply this method to design and test 92 dihedral symmetric protein assemblies using a set of designed homodimers and repeat protein building blocks. Experimental validation by native mass spectrometry, small-angle X-ray scattering, and negative-stain single-particle electron microscopy confirms the assembly states for 11 designs. Most of these assemblies are constructed from designed ankyrin repeat proteins (DARPins), held in place on one end by α-helical fusion and on the other by a designed homodimer interface, and we explored their use for cryogenic electron microscopy (cryo-EM) structure determination by incorporating DARPin variants selected to bind targets of interest. Although the target resolution was limited by preferred orientation effects and small scaffold size, we found that the dual anchoring strategy reduced the flexibility of the target-DARPIN complex with respect to the overall assembly, suggesting that multipoint anchoring of binding domains could contribute to cryo-EM structure determination of small proteins.


Assuntos
Nanoestruturas/química , Engenharia de Proteínas , Proteínas/química , Repetição de Anquirina , Nanoestruturas/ultraestrutura , Conformação Proteica em alfa-Hélice , Proteínas/genética , Proteínas/ultraestrutura
6.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33879614

RESUMO

The de novo design of polar protein-protein interactions is challenging because of the thermodynamic cost of stripping water away from the polar groups. Here, we describe a general approach for designing proteins which complement exposed polar backbone groups at the edge of beta sheets with geometrically matched beta strands. We used this approach to computationally design small proteins that bind to an exposed beta sheet on the human transferrin receptor (hTfR), which shuttles interacting proteins across the blood-brain barrier (BBB), opening up avenues for drug delivery into the brain. We describe a design which binds hTfR with a 20 nM Kd, is hyperstable, and crosses an in vitro microfluidic organ-on-a-chip model of the human BBB. Our design approach provides a general strategy for creating binders to protein targets with exposed surface beta edge strands.


Assuntos
Engenharia de Proteínas/métodos , Receptores da Transferrina/metabolismo , Receptores da Transferrina/fisiologia , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Proteínas/metabolismo , Transferrina/metabolismo
7.
Plant Cell Environ ; 46(1): 23-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200623

RESUMO

Photosynthetic manipulation provides new opportunities for enhancing crop yield. However, understanding and quantifying the importance of individual and multiple manipulations on the seasonal biomass growth and yield performance of target crops across variable production environments is limited. Using a state-of-the-art cross-scale model in the APSIM platform we predicted the impact of altering photosynthesis on the enzyme-limited (Ac ) and electron transport-limited (Aj ) rates, seasonal dynamics in canopy photosynthesis, biomass growth, and yield formation via large multiyear-by-location crop growth simulations. A broad list of promising strategies to improve photosynthesis for C3 wheat and C4 sorghum were simulated. In the top decile of seasonal outcomes, yield gains were predicted to be modest, ranging between 0% and 8%, depending on the manipulation and crop type. We report how photosynthetic enhancement can affect the timing and severity of water and nitrogen stress on the growing crop, resulting in nonintuitive seasonal crop dynamics and yield outcomes. We predicted that strategies enhancing Ac alone generate more consistent but smaller yield gains across all water and nitrogen environments, Aj enhancement alone generates larger gains but is undesirable in more marginal environments. Large increases in both Ac and Aj generate the highest gains across all environments. Yield outcomes of the tested manipulation strategies were predicted and compared for realistic Australian wheat and sorghum production. This study uniquely unpacks complex cross-scale interactions between photosynthesis and seasonal crop dynamics and improves understanding and quantification of the potential impact of photosynthesis traits (or lack of it) for crop improvement research.


Assuntos
Nitrogênio , Água , Austrália
8.
Proc Natl Acad Sci U S A ; 117(1): 346-354, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871208

RESUMO

Tryptophan synthase (TS) is a heterotetrameric αßßα complex. It is characterized by the channeling of the reaction intermediate indole and the mutual activation of the α-subunit TrpA and the ß-subunit TrpB via a complex allosteric network. We have analyzed this allosteric network by means of ancestral sequence reconstruction (ASR), which is an in silico method to resurrect extinct ancestors of modern proteins. Previously, the sequences of TrpA and TrpB from the last bacterial common ancestor (LBCA) have been computed by means of ASR and characterized. LBCA-TS is similar to modern TS by forming a αßßα complex with indole channeling taking place. However, LBCA-TrpA allosterically decreases the activity of LBCA-TrpB, whereas, for example, the modern ncTrpA from Neptuniibacter caesariensis allosterically increases the activity of ncTrpB. To identify amino acid residues that are responsible for this inversion of the allosteric effect, all 6 evolutionary TrpA and TrpB intermediates that stepwise link LBCA-TS with ncTS were characterized. Remarkably, the switching from TrpB inhibition to TrpB activation by TrpA occurred between 2 successive TS intermediates. Sequence comparison of these 2 intermediates and iterative rounds of site-directed mutagenesis allowed us to identify 4 of 413 residues from TrpB that are crucial for its allosteric activation by TrpA. The effect of our mutational studies was rationalized by a community analysis based on molecular dynamics simulations. Our findings demonstrate that ancestral sequence reconstruction can efficiently identify residues contributing to allosteric signal propagation in multienzyme complexes.


Assuntos
Proteínas de Bactérias/genética , Biologia Computacional , Extinção Biológica , Subunidades Proteicas/genética , Triptofano Sintase/genética , Regulação Alostérica/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oceanospirillaceae/genética , Oceanospirillaceae/metabolismo , Filogenia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Triptofano/biossíntese , Triptofano Sintase/química , Triptofano Sintase/metabolismo
9.
Anal Chem ; 94(3): 1608-1617, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35014260

RESUMO

Cross-linking combined with mass spectrometry (XL-MS) provides a wealth of information about the three-dimensional (3D) structure of proteins and their interactions. We introduce MaxLynx, a novel computational proteomics workflow for XL-MS integrated into the MaxQuant environment. It is applicable to noncleavable and MS-cleavable cross-linkers. For both, we have generalized the Andromeda peptide database search engine to efficiently identify cross-linked peptides. For noncleavable peptides, we implemented a novel dipeptide Andromeda score, which is the basis for a computationally efficient N-squared search engine. Additionally, partial scores summarize the evidence for the two constituents of the dipeptide individually. A posterior error probability (PEP) based on total and partial scores is used to control false discovery rates (FDRs). For MS-cleavable cross-linkers, a score of signature peaks is combined with the conventional Andromeda score on the cleavage products. The MaxQuant 3D peak detection was improved to ensure more accurate determination of the monoisotopic peak of isotope patterns for heavy molecules, which cross-linked peptides typically are. A wide selection of filtering parameters can replace the manual filtering of identifications, which is often necessary when using other pipelines. On benchmark data sets of synthetic peptides, MaxLynx outperforms all other tested software on data for both types of cross-linkers and on a proteome-wide data set of cross-linked Drosophila melanogaster cell lysate. The workflow also supports ion mobility-enhanced MS data. MaxLynx runs on Windows and Linux, contains an interactive viewer for displaying annotated cross-linked spectra, and is freely available at https://www.maxquant.org/.


Assuntos
Drosophila melanogaster , Peptídeos , Animais , Reagentes de Ligações Cruzadas/química , Espectrometria de Massas/métodos , Peptídeos/química , Proteoma/análise , Software
10.
New Phytol ; 233(1): 156-168, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34192346

RESUMO

Cuticular conductance to water (gcw ) is difficult to quantify for stomatous surfaces due to the complexity of separating cuticular and stomatal transpiration, and additional complications arise for determining adaxial and abaxial gcw . This has led to the neglect of gcw as a separate parameter in most common gas exchange measurements. Here, we describe a simple technique to simultaneously estimate adaxial and abaxial values of gcw , tested in two amphistomatous plant species. What we term the 'Red-Light method' is used to estimate gcw from gas exchange measurements and a known CO2 concentration inside the leaf during photosynthetic induction under red light. We provide an easy-to-use web application to assist with the calculation of gcw . While adaxial and abaxial gcw varies significantly between leaves of the same species we found that the ratio of adaxial/abaxial gcw (γn ) is stable within a plant species. This has implications for use of generic values of gcw when analysing gas exchange data. The Red-Light method can be used to estimate total cuticular conductance (gcw-T ) accurately with the most common setup of gas exchange instruments, i.e. a chamber mixing the adaxial and abaxial gases, allowing for a wide application of this technique.


Assuntos
Fotossíntese , Folhas de Planta , Luz , Água
11.
Biochemistry ; 60(24): 1876-1884, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34100589

RESUMO

Protein overexpression and purification are critical for in vitro structure-function characterization studies. However, some proteins are difficult to express in heterologous systems due to host-related (e.g., codon usage, translation rate) and/or protein-specific (e.g., toxicity, aggregation) challenges. Therefore, it is often necessary to test multiple overexpression and purification conditions to maximize the yield of functional protein, particularly for resource-heavy downstream applications (e.g., biocatalysts, tertiary structure determination, biotherapeutics). Here, we describe an automatable liquid chromatography-mass spectrometry-based method for direct analysis of target proteins in cell lysates. This approach is facilitated by coupling immobilized metal affinity chromatography (IMAC), which leverages engineered poly-histidine tags in proteins of interest, with size exclusion-based online buffer exchange (OBE) and native mass spectrometry (nMS). While we illustrate a proof of concept here using relatively straightforward examples, the use of IMAC-OBE-nMS to optimize conditions for large-scale protein production may become invaluable for expediting structural biology and biotherapeutic initiatives.


Assuntos
Cromatografia de Afinidade/métodos , Espectrometria de Massas/métodos , Proteínas/isolamento & purificação , Cromatografia Líquida/métodos , Histidina/química , Estudo de Prova de Conceito
12.
Plant J ; 101(4): 919-939, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31910295

RESUMO

Photorespiratory metabolism is essential for plants to maintain functional photosynthesis in an oxygen-containing environment. Because the oxygenation reaction of Rubisco is followed by the loss of previously fixed carbon, photorespiration is often considered a wasteful process and considerable efforts are aimed at minimizing the negative impact of photorespiration on the plant's carbon uptake. However, the photorespiratory pathway has also many positive aspects, as it is well integrated within other metabolic processes, such as nitrogen assimilation and C1 metabolism, and it is important for maintaining the redox balance of the plant. The overall effect of photorespiratory carbon loss on the net CO2 fixation of the plant is also strongly influenced by the physiology of the leaf related to CO2 diffusion. This review outlines the distinction between Rubisco oxygenation and photorespiratory CO2 release as a basis to evaluate the costs and benefits of photorespiration.


Assuntos
Dióxido de Carbono/metabolismo , Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Cloroplastos/metabolismo , Glicina/metabolismo , Redes e Vias Metabólicas , Nitrogênio/metabolismo , Oxigênio/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/química , Enxofre/metabolismo
13.
Plant J ; 102(1): 129-137, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31755157

RESUMO

Bundle Sheath Defective 2, BSD2, is a stroma-targeted protein initially identified as a factor required for the biogenesis of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) in maize. Plants and algae universally have a homologous gene for BSD2 and its deficiency causes a RuBisCO-less phenotype. As RuBisCO can be the rate-limiting step in CO2 assimilation, the overexpression of BSD2 might improve photosynthesis and productivity through the accumulation of RuBisCO. To examine this hypothesis, we produced BSD2 overexpression lines in Arabidopsis. Compared with wild type, the BSD2 overexpression lines BSD2ox-2 and BSD2ox-3 expressed 4.8-fold and 8.8-fold higher BSD2 mRNA, respectively, whereas the empty-vector (EV) harbouring plants had a comparable expression level. The overexpression lines showed a significantly higher CO2 assimilation rate per available CO2 and productivity than EV plants. The maximum carboxylation rate per total catalytic site was accelerated in the overexpression lines, while the number of total catalytic sites and RuBisCO content were unaffected. We then isolated recombinant BSD2 (rBSD2) from E. coli and found that rBSD2 reduces disulfide bonds using reductants present in vivo, for example glutathione, and that rBSD2 has the ability to reactivate RuBisCO that has been inactivated by oxidants. Furthermore, 15% of RuBisCO freshly isolated from leaves of EV was oxidatively inactivated, as compared with 0% in BSD2-overexpression lines, suggesting that the overexpression of BSD2 maintains RuBisCO to be in the reduced active form in vivo. Our results demonstrated that the overexpression of BSD2 improves photosynthetic efficiency in Arabidopsis and we conclude that it is involved in mediating RuBisCO activation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fotossíntese/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Escherichia coli , Regulação da Expressão Gênica de Plantas , Proteínas Recombinantes , Ribulose-Bifosfato Carboxilase/metabolismo
14.
Plant Physiol ; 182(1): 566-583, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31611421

RESUMO

The Australian grass subtribe Neurachninae contains closely related species that use C3, C4, and C2 photosynthesis. To gain insight into the evolution of C4 photosynthesis in grasses, we examined leaf gas exchange, anatomy and ultrastructure, and tissue localization of Gly decarboxylase subunit P (GLDP) in nine Neurachninae species. We identified previously unrecognized variation in leaf structure and physiology within Neurachne that represents varying degrees of C3-C4 intermediacy in the Neurachninae. These include inverse correlations between the apparent photosynthetic carbon dioxide (CO2) compensation point in the absence of day respiration (C * ) and chloroplast and mitochondrial investment in the mestome sheath (MS), where CO2 is concentrated in C2 and C4 Neurachne species; width of the MS cells; frequency of plasmodesmata in the MS cell walls adjoining the parenchymatous bundle sheath; and the proportion of leaf GLDP invested in the MS tissue. Less than 12% of the leaf GLDP was allocated to the MS of completely C3 Neurachninae species with C * values of 56-61 µmol mol-1, whereas two-thirds of leaf GLDP was in the MS of Neurachne lanigera, which exhibits a newly-identified, partial C2 phenotype with C * of 44 µmol mol-1 Increased investment of GLDP in MS tissue of the C2 species was attributed to more MS mitochondria and less GLDP in mesophyll mitochondria. These results are consistent with a model where C4 evolution in Neurachninae initially occurred via an increase in organelle and GLDP content in MS cells, which generated a sink for photorespired CO2 in MS tissues.


Assuntos
Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Plasmodesmos/metabolismo , Plasmodesmos/fisiologia , Poaceae/genética , Poaceae/fisiologia
15.
Plant Cell Environ ; 44(9): 2811-2837, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33872407

RESUMO

On the occasion of the 40th anniversary of the publication of the landmark model by Farquhar, von Caemmerer & Berry on steady-state C3 photosynthesis (known as the "FvCB model"), we review three major further developments of the model. These include: (1) limitation by triose phosphate utilization, (2) alternative electron transport pathways, and (3) photorespiration-associated nitrogen and C1 metabolisms. We discussed the relation of the third extension with the two other extensions, and some equivalent extensions to model C4 photosynthesis. In addition, the FvCB model has been coupled with CO2 -diffusion models. We review how these extensions and integration have broadened the use of the FvCB model in understanding photosynthesis, especially with regard to bioenergetic stoichiometries associated with photosynthetic quantum yields. Based on the new insights, we present caveats in applying the FvCB model. Further research needs are highlighted.


Assuntos
Modelos Biológicos , Fotossíntese , Transporte de Elétrons , Redes e Vias Metabólicas , Plantas/metabolismo
16.
J Exp Bot ; 72(13): 4930-4937, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33928359

RESUMO

C4 plants, such as maize, strictly compartmentalize Rubisco to bundle sheath chloroplasts. The molecular basis for the restriction of Rubisco from the more abundant mesophyll chloroplasts is not fully understood. Mesophyll chloroplasts transcribe the Rubisco large subunit gene and, when normally quiescent transcription of the nuclear Rubisco small subunit gene family is overcome by ectopic expression, mesophyll chloroplasts still do not accumulate measurable Rubisco. Here we show that a combination of five ubiquitin promoter-driven nuclear transgenes expressed in maize leads to mesophyll accumulation of assembled Rubisco. These encode the Rubisco large and small subunits, Rubisco assembly factors 1 and 2, and the assembly factor Bundle sheath defective 2. In these plants, Rubisco large subunit accumulates in mesophyll cells, and appears to be assembled into a holoenzyme capable of binding the substrate analog CABP (carboxyarabinitol bisphosphate). Isotope discrimination assays suggest, however, that mesophyll Rubisco is not participating in carbon assimilation in these plants, most probably due to a lack of the substrate ribulose 1,5-bisphosphate and/or Rubisco activase. Overall, this work defines a minimal set of Rubisco assembly factors in planta and may help lead to methods of regulating the C4 pathway.


Assuntos
Ribulose-Bifosfato Carboxilase , Zea mays , Cloroplastos/metabolismo , Expressão Ectópica do Gene , Células do Mesofilo/metabolismo , Fotossíntese , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Zea mays/genética , Zea mays/metabolismo
17.
Proc Natl Acad Sci U S A ; 115(6): 1268-1273, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29351988

RESUMO

Computational protein design provides the tools to expand the diversity of protein complexes beyond those found in nature. Understanding the rules that drive proteins to interact with each other enables the design of protein-protein interactions to generate specific protein assemblies. In this work, we designed protein-protein interfaces between dimers and trimers to generate dodecameric protein assemblies with dihedral point group symmetry. We subsequently analyzed the designed protein complexes by native MS. We show that the use of ion mobility MS in combination with surface-induced dissociation (SID) allows for the rapid determination of the stoichiometry and topology of designed complexes. The information collected along with the speed of data acquisition and processing make SID ion mobility MS well-suited to determine key structural features of designed protein complexes, thereby circumventing the requirement for more time- and sample-consuming structural biology approaches.


Assuntos
Espectrometria de Massas/métodos , Complexos Multiproteicos/química , Avidina/química , Lactoglobulinas/química , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Pré-Albumina/química , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química
18.
Plant Biotechnol J ; 18(6): 1409-1420, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31793172

RESUMO

Many C4 plants, including maize, perform poorly under chilling conditions. This phenomenon has been linked in part to decreased Rubisco abundance at lower temperatures. An exception to this is chilling-tolerant Miscanthus, which is able to maintain Rubisco protein content under such conditions. The goal of this study was to investigate whether increasing Rubisco content in maize could improve performance during or following chilling stress. Here, we demonstrate that transgenic lines overexpressing Rubisco large and small subunits and the Rubisco assembly factor RAF1 (RAF1-LSSS), which have increased Rubisco content and growth under control conditions, maintain increased Rubisco content and growth during chilling stress. RAF1-LSSS plants exhibited 12% higher CO2 assimilation relative to nontransgenic controls under control growth conditions, and a 17% differential after 2 weeks of chilling stress, although assimilation rates of all genotypes were ~50% lower in chilling conditions. Chlorophyll fluorescence measurements showed RAF1-LSSS and WT plants had similar rates of photochemical quenching during chilling, suggesting Rubisco may not be the primary limiting factor that leads to poor performance in maize under chilling conditions. In contrast, RAF1-LSSS had improved photochemical quenching before and after chilling stress, suggesting that increased Rubisco may help plants recover faster from chilling conditions. Relatively increased leaf area, dry weight and plant height observed before chilling in RAF1-LSSS were also maintained during chilling. Together, these results demonstrate that an increase in Rubisco content allows maize plants to better cope with chilling stress and also improves their subsequent recovery, yet additional modifications are required to engineer chilling tolerance in maize.


Assuntos
Ribulose-Bifosfato Carboxilase , Zea mays , Temperatura Baixa , Fotossíntese , Poaceae/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Zea mays/genética , Zea mays/metabolismo
19.
Proc Natl Acad Sci U S A ; 114(40): E8333-E8342, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923934

RESUMO

Cells contain a multitude of protein complexes whose subunits interact with high specificity. However, the number of different protein folds and interface geometries found in nature is limited. This raises the question of how protein-protein interaction specificity is achieved on the structural level and how the formation of nonphysiological complexes is avoided. Here, we describe structural elements called interface add-ons that fulfill this function and elucidate their role for the diversification of protein-protein interactions during evolution. We identified interface add-ons in 10% of a representative set of bacterial, heteromeric protein complexes. The importance of interface add-ons for protein-protein interaction specificity is demonstrated by an exemplary experimental characterization of over 30 cognate and hybrid glutamine amidotransferase complexes in combination with comprehensive genetic profiling and protein design. Moreover, growth experiments showed that the lack of interface add-ons can lead to physiologically harmful cross-talk between essential biosynthetic pathways. In sum, our complementary in silico, in vitro, and in vivo analysis argues that interface add-ons are a practical and widespread evolutionary strategy to prevent the formation of nonphysiological complexes by specializing protein-protein interactions.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Evolução Biológica , Domínios e Motivos de Interação entre Proteínas , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bases de Dados de Proteínas , Modelos Moleculares , Ligação Proteica , Conformação Proteica
20.
Chembiochem ; 20(21): 2747-2751, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31090986

RESUMO

The αßßα tryptophan synthase (TS), which is part of primary metabolism, is a paradigm for allosteric communication in multienzyme complexes. In particular, the intrinsically low catalytic activity of the α-subunit TrpA is stimulated several hundredfold through the interaction with the ß-subunit TrpB1. The BX1 protein from Zea mays (zmBX1), which is part of secondary metabolism, catalyzes the same reaction as that of its homologue TrpA, but with high activity in the absence of an interaction partner. The intrinsic activity of TrpA can be significantly increased through the exchange of several active-site loop residues, which mimic the corresponding loop in zmBX1. The subsequent identification of activating amino acids in the generated "stand-alone" TrpA contributes to an understanding of allostery in TS. Moreover, findings suggest an evolutionary trajectory that describes the transition from a primary metabolic enzyme regulated by an interaction partner to a self-reliant, stand-alone, secondary metabolic enzyme.


Assuntos
Complexos Multienzimáticos/metabolismo , Proteínas de Plantas/metabolismo , Triptofano Sintase/metabolismo , Zea mays/enzimologia , Sequência de Aminoácidos , Biocatálise , Evolução Biológica , Domínio Catalítico , Cinética , Modelos Moleculares , Complexos Multienzimáticos/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos , Triptofano Sintase/química , Triptofano Sintase/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA