Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263992

RESUMO

OBJECTIVES: Spinocerebellar ataxia 27B due to GAA repeat expansions in the fibroblast growth factor 14 (FGF14) gene has recently been recognized as a common cause of late-onset hereditary cerebellar ataxia. Here we present the first report of this disease in the US population, characterizing its clinical manifestations, disease progression, pathological abnormalities, and response to 4-aminopyridine in a cohort of 102 patients bearing GAA repeat expansions. METHODS: We compiled a series of patients with SCA27B, recruited from 5 academic centers across the United States. Clinical manifestations and patient demographics were collected retrospectively from clinical records in an unblinded approach using a standardized form. Post-mortem analysis was done on 4 brains of patients with genetically confirmed SCA27B. RESULTS: In our cohort of 102 patients with SCA27B, we found that SCA27B was a late-onset (57 ± 12.5 years) slowly progressive ataxia with an episodic component in 51% of patients. Balance and gait impairment were almost always present at disease onset. The principal finding on post-mortem examination of 4 brain specimens was loss of Purkinje neurons that was most severe in the vermis most particularly in the anterior vermis. Similar to European populations, a high percent of patients 21/28 (75%) reported a positive treatment response with 4-aminopyridine. INTERPRETATION: Our study further estimates prevalence and further expands the clinical, imaging and pathological features of SCA27B, while looking at treatment response, disease progression, and survival in patients with this disease. Testing for SCA27B should be considered in all undiagnosed ataxia patients, especially those with episodic onset. ANN NEUROL 2024.

2.
Mov Disord ; 39(10): 1856-1867, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39056163

RESUMO

BACKGROUND: Clinical trials for upcoming disease-modifying therapies of spinocerebellar ataxias (SCA), a group of rare movement disorders, lack endpoints sensitive to early disease progression, when therapeutics will be most effective. In addition, regulatory agencies emphasize the importance of biological outcomes. OBJECTIVES: READISCA, a transatlantic clinical trial readiness consortium, investigated whether advanced multimodal magnetic resonance imaging (MRI) detects pathology progression over 6 months in preataxic and early ataxic carriers of SCA mutations. METHODS: A total of 44 participants (10 SCA1, 25 SCA3, and 9 controls) prospectively underwent 3-T MR scanning at baseline and a median [interquartile range] follow-up of 6.2 [5.9-6.7] months; 44% of SCA participants were preataxic. Blinded analyses of annual changes in structural, diffusion MRI, MR spectroscopy, and the Scale for Assessment and Rating of Ataxia (SARA) were compared between groups using nonparametric testing. Sample sizes were estimated for 6-month interventional trials with 50% to 100% treatment effect size, leveraging existing large cohort data (186 SCA1, 272 SCA3) for the SARA estimate. RESULTS: Rate of change in microstructural integrity (decrease in fractional anisotropy, increase in diffusivities) in the middle cerebellar peduncle, corona radiata, and superior longitudinal fasciculus significantly differed in SCAs from controls (P < 0.005), with high effect sizes (Cohen's d = 1-2) and moderate-to-high responsiveness (|standardized response mean| = 0.6-0.9) in SCAs. SARA scores did not change, and their rate of change did not differ between groups. CONCLUSIONS: Diffusion MRI is sensitive to disease progression at very early-stage SCA1 and SCA3 and may provide a >5-fold reduction in sample sizes relative to SARA as endpoint for 6-month-long trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Progressão da Doença , Imageamento por Ressonância Magnética , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/patologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos
3.
Cerebellum ; 23(4): 1411-1425, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38165578

RESUMO

The Cerebellar Cognitive Affective/Schmahmann Syndrome (CCAS) manifests as impaired executive control, linguistic processing, visual spatial function, and affect regulation. The CCAS has been described in the spinocerebellar ataxias (SCAs), but its prevalence is unknown. We analyzed results of the CCAS/Schmahmann Scale (CCAS-S), developed to detect and quantify CCAS, in two natural history studies of 309 individuals Symptomatic for SCA1, SCA2, SCA3, SCA6, SCA7, or SCA8, 26 individuals Pre-symptomatic for SCA1 or SCA3, and 37 Controls. We compared total raw scores, domain scores, and total fail scores between Symptomatic, Pre-symptomatic, and Control cohorts, and between SCA types. We calculated scale sensitivity and selectivity based on CCAS category designation among Symptomatic individuals and Controls, and correlated CCAS-S performance against age and education, and in Symptomatic patients, against genetic repeat length, onset age, disease duration, motor ataxia, depression, and fatigue. Definite CCAS was identified in 46% of the Symptomatic group. False positive rate among Controls was 5.4%. Symptomatic individuals had poorer global CCAS-S performance than Controls, accounting for age and education. The domains of semantic fluency, phonemic fluency, and category switching that tap executive function and linguistic processing consistently separated Symptomatic individuals from Controls. CCAS-S scores correlated most closely with motor ataxia. Controls were similar to Pre-symptomatic individuals whose nearness to symptom onset was unknown. The use of the CCAS-S identifies a high CCAS prevalence in a large cohort of SCA patients, underscoring the utility of the scale and the notion that the CCAS is the third cornerstone of clinical ataxiology.


Assuntos
Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/psicologia , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Função Executiva/fisiologia , Testes Neuropsicológicos , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/psicologia , Estudos de Coortes
4.
Ann Neurol ; 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36511514

RESUMO

OBJECTIVE: This study was undertaken to identify magnetic resonance (MR) metrics that are most sensitive to early changes in the brain in spinocerebellar ataxia type 1 (SCA1) and type 3 (SCA3) using an advanced multimodal MR imaging (MRI) protocol in the multisite trial setting. METHODS: SCA1 or SCA3 mutation carriers and controls (n = 107) underwent MR scanning in the US-European READISCA study to obtain structural, diffusion MRI, and MR spectroscopy data using an advanced protocol at 3T. Morphometric, microstructural, and neurochemical metrics were analyzed blinded to diagnosis and compared between preataxic SCA (n = 11 SCA1, n = 28 SCA3), ataxic SCA (n = 14 SCA1, n = 37 SCA3), and control (n = 17) groups using nonparametric testing accounting for multiple comparisons. MR metrics that were most sensitive to preataxic abnormalities were identified using receiver operating characteristic (ROC) analyses. RESULTS: Atrophy and microstructural damage in the brainstem and cerebellar peduncles and neurochemical abnormalities in the pons were prominent in both preataxic groups, when patients did not differ from controls clinically. MR metrics were strongly associated with ataxia symptoms, activities of daily living, and estimated ataxia duration. A neurochemical measure was the most sensitive metric to preataxic changes in SCA1 (ROC area under the curve [AUC] = 0.95), and a microstructural metric was the most sensitive metric to preataxic changes in SCA3 (AUC = 0.92). INTERPRETATION: Changes in cerebellar afferent and efferent pathways underlie the earliest symptoms of both SCAs. MR metrics collected with a harmonized advanced protocol in the multisite trial setting allow detection of disease effects in individuals before ataxia onset with potential clinical trial utility for subject stratification. ANN NEUROL 2022.

5.
Cerebellum ; 22(5): 790-809, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35962273

RESUMO

Spinocerebellar ataxias (SCAs) are progressive neurodegenerative disorders, but there is no metric that predicts disease severity over time. We hypothesized that by developing a new metric, the Severity Factor (S-Factor) using immutable disease parameters, it would be possible to capture disease severity independent of clinical rating scales. Extracting data from the CRC-SCA and READISCA natural history studies, we calculated the S-Factor for 438 participants with symptomatic SCA1, SCA2, SCA3, or SCA6, as follows: ((length of CAG repeat expansion - maximum normal repeat length) /maximum normal repeat length) × (current age - age at disease onset) × 10). Within each SCA type, the S-Factor at the first Scale for the Assessment and Rating of Ataxia (SARA) visit (baseline) was correlated against scores on SARA and other motor and cognitive assessments. In 281 participants with longitudinal data, the slope of the S-Factor over time was correlated against slopes of scores on SARA and other motor rating scales. At baseline, the S-Factor showed moderate-to-strong correlations with SARA and other motor rating scales at the group level, but not with cognitive performance. Longitudinally the S-Factor slope showed no consistent association with the slope of performance on motor scales. Approximately 30% of SARA slopes reflected a trend of non-progression in motor symptoms. The S-Factor is an observer-independent metric of disease burden in SCAs. It may be useful at the group level to compare cohorts at baseline in clinical studies. Derivation and examination of the S-factor highlighted challenges in the use of clinical rating scales in this population.


Assuntos
Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/epidemiologia , Gravidade do Paciente , Progressão da Doença
6.
Mov Disord ; 37(9): 1850-1860, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35808813

RESUMO

BACKGROUND: Disease severity in spinocerebellar ataxia type 3 (SCA3) is commonly defined by the Scale for the Assessment and Rating of Ataxia (SARA) sum score, but little is known about the contributions and progression patterns of individual items. OBJECTIVES: To investigate the temporal dynamics of SARA item scores in SCA3 patients and evaluate if clinical and demographic factors are differentially associated with evolution of axial and appendicular ataxia. METHODS: In a prospective, multinational cohort study involving 11 European and 2 US sites, SARA scores were determined longitudinally in 223 SCA3 patients with a follow-up assessment after 1 year. RESULTS: An increase in SARA score from 10 to 20 points was mainly driven by axial and speech items, with a markedly smaller contribution of appendicular items. Finger chase and nose-finger test scores not only showed the lowest variability at baseline, but also the least deterioration at follow-up. Compared with the full set of SARA items, omission of both tests would result in lower sample size requirements for therapeutic trials. Sex was associated with change in SARA sum score and appendicular, but not axial, subscore, with a significantly faster progression in men. Despite considerable interindividual variability, the average annual progression rate of SARA score was approximately three times higher in subjects with a disease duration over 10 years than in those within 10 years from onset. CONCLUSION: Our findings provide evidence for a difference in temporal dynamics between axial and appendicular ataxia in SCA3 patients, which will help inform the design of clinical trials and development of new (etiology-specific) outcome measures. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Machado-Joseph , Ataxia , Estudos de Coortes , Humanos , Doença de Machado-Joseph/complicações , Masculino , Estudos Prospectivos , Índice de Gravidade de Doença
7.
Mov Disord ; 37(2): 405-410, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713931

RESUMO

BACKGROUND: Lifestyle could influence the course of hereditary ataxias, but representative data are missing. OBJECTIVE: The objective of this study was to characterize lifestyle in spinocerebellar ataxia type 3 (SCA3) and investigate possible associations with disease parameters. METHODS: In a prospective cohort study, data on smoking, alcohol consumption, physical activity, physiotherapy, and body mass index (BMI) were collected from 243 patients with SCA3 and 119 controls and tested for associations with age of onset, disease severity, and progression. RESULTS: Compared with controls, patients with SCA3 were less active and consumed less alcohol. Less physical activity and alcohol abstinence were associated with more severe disease, but not with progression rates or age of onset. Smoking, BMI, or physiotherapy did not correlate with disease parameters. CONCLUSION: Differences in lifestyle factors of patients with SCA3 and controls as well as associations of lifestyle factors with disease severity are likely driven by the influence of symptoms on behavior. No association between lifestyle and disease progression was detected. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Machado-Joseph , Ataxias Espinocerebelares , Humanos , Estilo de Vida , Estudos Prospectivos , Índice de Gravidade de Doença , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/epidemiologia
8.
Ann Neurol ; 83(4): 816-829, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29575033

RESUMO

OBJECTIVE: To investigate whether early neurochemical abnormalities are detectable by high-field magnetic resonance spectroscopy (MRS) in individuals with spinocerebellar ataxias (SCAs) 1, 2, 3, and 6, including patients without manifestation of ataxia. METHODS: A cohort of 100 subjects (N = 18-21 in each SCA group, including premanifest mutation carriers; mean score on the Scale for the Assessment and Rating of Ataxia [SARA] <10 for all genotypes, and 22 matched controls) was scanned at 7 Tesla to obtain neurochemical profiles of the cerebellum and brainstem. A novel multivariate approach (distance-weighted discrimination) was used to combine regional profiles into an "MRS score." RESULTS: MRS scores robustly distinguished individuals with SCA from controls, with misclassification rates of 0% (SCA2), 2% (SCA3), 5% (SCA1), and 17% (SCA6). Premanifest mutation carriers with estimated disease onset within 10 years had MRS scores in the range of early-manifest SCA subjects. Levels of neuronal and glial markers significantly correlated with SARA and an Activities of Daily Living score in subjects with SCA. Regional neurochemical alterations were different between SCAs at comparable disease severity, with SCA2 displaying the most extensive neurochemical abnormalities, followed by SCA1, SCA3, and SCA6. INTERPRETATION: Neurochemical abnormalities are detectable in individuals before manifest disease, which may allow premanifest enrollment in future SCA trials. Correlations with ataxia and quality-of-life scores show that neurochemical levels can serve as clinically meaningful endpoints in trials. Ranking of SCA types by degree of neurochemical abnormalities indicates that the neurochemistry may reflect synaptic function or density. Ann Neurol 2018;83:816-829.


Assuntos
Ácido Aspártico/análogos & derivados , Encefalopatias Metabólicas/etiologia , Encéfalo/metabolismo , Ataxias Espinocerebelares/patologia , Atividades Cotidianas , Adulto , Idoso , Ácido Aspártico/metabolismo , Ataxinas/genética , Encéfalo/diagnóstico por imagem , Encefalopatias Metabólicas/diagnóstico por imagem , Estudos de Casos e Controles , Estudos de Coortes , Estudos Transversais , Progressão da Doença , Feminino , Ácido Glutâmico/metabolismo , Humanos , Inositol/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
9.
Cerebellum ; 18(3): 519-526, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30830673

RESUMO

Cerebellar degenerative pathology has been identified in tremor patients; however, how the degenerative pathology could contribute to tremor remains unclear. If the cerebellar degenerative pathology can directly drive tremor, one would hypothesize that tremor is likely to occur in the diseases of cerebellar ataxia and follows the disease progression in such disorders. To further test this hypothesis, we studied the occurrence of tremor in different disease stages of classical cerebellar degenerative disorders: spinocerebellar ataxias (SCAs). We further separately analyzed postural tremor and rest tremor, two forms of tremor that both involve the cerebellum. We also explored tremor in different subtypes of SCAs. We found that 18.1% of SCA patients have tremor. Interestingly, SCA patients with tremor have worse ataxia than those without tremor. When stratifying patients into mild, moderate, and severe disease stages according to the severity of ataxia, moderate and severe SCA patients more commonly have tremor than those with mild ataxia, the effect most prominently observed in postural tremor of SCA3 and SCA6 patients. Finally, tremor can independently contribute to worse functional status in SCA2 patients, even after adjusting for ataxia severity. Tremor is more likely to occur in the severe stage of cerebellar degeneration when compared to mild stages. Our results partially support the cerebellar degenerative model of tremor.


Assuntos
Cerebelo/patologia , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/patologia , Tremor/etiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tremor/epidemiologia
10.
Cerebellum ; 16(3): 615-622, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27848087

RESUMO

The aim of this study is to determine whether the initial symptom associates with motor progression in spinocerebellar ataxias (SCAs). SCAs are clinically heterogeneous and the initial presentation may represent different subtypes of SCA with different motor progression. We studied 317 participants with SCAs1, 2, 3, and 6 from the Clinical Research Consortium for SCAs (CRC-SCA) and repeatedly measured the severity of ataxia for 2 years. SCA patients were divided into gait-onset and non-gait-onset (speech, vision, and hand dexterity) groups based on the initial presentation. In addition to demographic comparison, we employed regression models to study ataxia progression in these two groups after adjusting for age, sex, and pathological CAG repeats. The majority of SCA patients had gait abnormality as an initial presentation. The pathological CAG repeat expansions were similar between the gait-onset and non-gait-onset groups. In SCA1, gait-onset group progressed slower than non-gait-onset group, while gait-onset SCA6 group progressed faster than their counterpart. In addition, the disease presented 9 years later for SCA2 gait-onset group than non-gait-onset group. Initial symptoms of SCA3 did not influence age of onset or disease progression. The initial symptom in each SCA has a different influence on age of onset and motor progression. Therefore, gait and non-gait-onset groups of SCAs might represent different subtypes of the diseases.


Assuntos
Ataxinas/genética , Ataxia Cerebelar/genética , Ataxias Espinocerebelares/genética , Adulto , Idoso , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Repressoras/genética , Ataxias Espinocerebelares/diagnóstico , Repetições de Trinucleotídeos/genética
11.
Mov Disord ; 30(2): 214-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25449974

RESUMO

The aim of this study was to investigate the association between drug exposure and disease severity in SCA types 1, 2, 3 and 6. The Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA) enrolled 319 participants with SCA1, 2, 3, and 6 from 12 medical centers in the United States and repeatedly measured clinical severity by the Scale for Assessment and Rating of Ataxia (SARA), the Unified Huntington's Disease Rating Scale part IV (UHDRS-IV), and the 9-item Patient Health Questionnaire during July 2009 to May 2012. We employed generalized estimating equations in regression models to study the longitudinal effects of coenzyme Q10 (CoQ10), statin, and vitamin E on clinical severity of ataxia after adjusting for age, sex, and pathological CAG repeat number. Cross-sectionally, exposure to CoQ10 was associated with lower SARA and higher UHDRS-IV scores in SCA1 and 3. No association was found between statins, vitamin E, and clinical outcome. Longitudinally, CoQ10, statins, and vitamin E did not change the rates of clinical deterioration indexed by SARA and UHDRS-IV scores within 2 years. CoQ10 is associated with better clinical outcome in SCA1 and 3. These drug exposures did not appear to influence clinical progression within 2 years. Further studies are warranted to confirm the association.


Assuntos
Ataxias Espinocerebelares/tratamento farmacológico , Ubiquinona/análogos & derivados , Adulto , Idade de Início , Idoso , Progressão da Doença , Feminino , Humanos , Doença de Huntington/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Ataxias Espinocerebelares/diagnóstico , Inquéritos e Questionários , Resultado do Tratamento , Ubiquinona/uso terapêutico
12.
Cerebellum ; 14(2): 142-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25205331

RESUMO

The proceedings of the workshop synthesize the experimental, preclinical, and clinical data suggesting that the cerebellum, basal ganglia (BG), and their connections play an important role in pathophysiology of various movement disorders (like Parkinson's disease and atypical parkinsonian syndromes) or neurodevelopmental disorders (like autism). The contributions from individual distinguished speakers cover the neuroanatomical research of complex networks, neuroimaging data showing that the cerebellum and BG are connected to a wide range of other central nervous system structures involved in movement control. Especially, the cerebellum plays a more complex role in how the brain functions than previously thought.


Assuntos
Gânglios da Base/fisiologia , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Animais , Transtorno Autístico/fisiopatologia , Gânglios da Base/anatomia & histologia , Gânglios da Base/patologia , Gânglios da Base/fisiopatologia , Cerebelo/anatomia & histologia , Cerebelo/patologia , Cerebelo/fisiopatologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , República Tcheca , Humanos , Atividade Motora/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/patologia , Vias Neurais/fisiologia , Vias Neurais/fisiopatologia
13.
J Neuroophthalmol ; 35(1): 16-21, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25259863

RESUMO

BACKGROUND: Ocular motor abnormalities reflect the varied neuropathology of spinocerebellar ataxias (SCAs) and may serve to clinically distinguish the different SCAs. We analyzed the various eye movement abnormalities detected prospectively at the baseline visit during a large multicenter natural history study of SCAs 1, 2, 3, and 6. METHODS: The data were prospectively collected from 12 centers in the United States in patients with SCAs 1, 2, 3, and 6, as part of the Clinical Research Consortium for Spinocerebellar Ataxias (NIH-CRC-SCA). Patient characteristics, ataxia rating scales, the Unified Huntington Disease Rating Scale functional examination, and clinical staging were used. Eye movement abnormalities including nystagmus, disorders of saccades and pursuit, and ophthalmoparesis were recorded, and factors influencing their occurrence were examined. RESULTS: A total of 301 patients participated in this study, including 52 patients with SCA 1, 64 with SCA 2, 117 with SCA 3, and 68 with SCA 6. Although no specific ocular motor abnormality was pathognomonic to any SCA, significant differences were noted in their occurrence among different disorders. SCA 6 was characterized by frequent occurrence of nystagmus and abnormal pursuit and rarity of slow saccades and ophthalmoparesis and SCA 2 by the frequent occurrence of slow saccades and infrequent nystagmus and dysmetric saccades. SCA 1 and SCA 3 subjects had a more even distribution of eye movement abnormalities. CONCLUSIONS: Prospective data from a large cohort of patients with SCAs 1, 2, 3, and 6 provide statistical validation that the SCAs exhibit distinct eye movement abnormalities that are useful in identifying the genotypes. Many of the abnormalities correlate with greater disease severity measures.


Assuntos
Transtornos da Motilidade Ocular/diagnóstico , Transtornos da Motilidade Ocular/etiologia , Ataxias Espinocerebelares/complicações , Adulto , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Índice de Gravidade de Doença , Ataxias Espinocerebelares/classificação , Ataxias Espinocerebelares/genética , Estados Unidos
14.
Adv Exp Med Biol ; 829: 155-65, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25358710

RESUMO

The cerebellum, and the olivo-cerebellar system in particular, may be the central mechanism of a neural clock that provides a rhythmic neural signal used to time motor and cognitive processes. Several independent lines of evidence support this hypothesis. First, the resting membrane potential of neurons in the inferior olive oscillates at ~10 Hz and the neural input from the olive leads to rhythmic complex spikes in cerebellum Purkinje cells. Second, the repeating modular microstructure of the cerebellum is ideally suited for performing computations underlying a basic neural process such as timing. Third, damage to the cerebellum leads to deficits in the perception of time and in the production of timed movements. Fourth, functional imaging studies in human subjects have shown activation of the inferior olive specifically during time perception. However, additional data on the exact role of rhythmic cerebellar activity during basis motor and sensory processing will be necessary before the hypothesis that the cerebellum is a neural clock is more widely accepted.


Assuntos
Relógios Biológicos/fisiologia , Cerebelo/fisiologia , Atividade Motora/fisiologia , Núcleo Olivar/fisiologia , Percepção do Tempo/fisiologia , Potenciais de Ação/fisiologia , Animais , Humanos
15.
Proc Natl Acad Sci U S A ; 108(33): 13818-22, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21808015

RESUMO

The timing of events can be implicit or without awareness yet critical for task performance. However, the neural correlates of implicit timing are unknown. One system that has long been implicated in event timing is the olivocerebellar system, which originates exclusively from the inferior olive. By using event-related functional MRI in human subjects and a specially designed behavioral task, we examined the effect of the subjects' awareness of changes in stimulus timing on the olivocerebellar system response. Subjects were scanned while observing changes in stimulus timing that were presented near each subject's detection threshold such that subjects were aware of such changes in only approximately half the trials. The inferior olive and multiple areas within the cerebellar cortex showed a robust response to time changes regardless of whether the subjects were aware of these changes. Our findings provide support to the proposed role of the olivocerebellar system in encoding temporal information and further suggest that this system can operate independently of awareness and mediate implicit timing in a multitude of perceptual and motor operations, including classical conditioning and implicit learning.


Assuntos
Conscientização/fisiologia , Cerebelo/fisiologia , Núcleo Olivar/fisiologia , Adulto , Córtex Cerebelar , Condicionamento Clássico , Feminino , Humanos , Aprendizagem , Imageamento por Ressonância Magnética , Masculino , Tempo de Reação/fisiologia
16.
J Neurol ; 271(7): 3743-3753, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822840

RESUMO

BACKGROUND: The Scale for Assessment and Rating of Ataxia (SARA) is a widely used clinical scale to assess cerebellar ataxia but faces some criticisms about the relevancy of all its items. OBJECTIVES: To prepare for future clinical trials, we analyzed the progression of SARA and its items in several polyQ spinocerebellar ataxias (SCA) from various cohorts. METHODS: We included data from patients with SCA1, SCA2, SCA3, and SCA6 from four cohorts (EUROSCA, RISCA, CRC-SCA, and SPATAX) for a total of 850 carriers and 3431 observations. Longitudinal progression of the SARA and its items was measured. Cohort, stage and genetic effects were tested. We looked at the respective contribution of each item to the total scale. Sensitivity to change of the scale and the impact of item removal was evaluated by calculating sample sizes needed in various scenarios. RESULTS: Longitudinal progression was significantly different between cohorts in SCA1, SCA2 and SCA3, the EUROSCA cohort having the fastest progression. Advanced-stage patients were progressing slower in SCA2 and SCA6. Items were not contributing equally to the full scale through ataxia severity: gait, stance, hand movement, and heel-shin contributed the most in the early stage, and finger-chase, nose-finger, and sitting in later stages. Few items drove the sensitivity to the change of SARA, but changes in the scale structure could not improve its sensitivity in all populations. CONCLUSION: SARA and its item's progression pace showed high heterogeneity across cohorts and SCAs. However, no combinations of items improved the responsiveness in all SCAs or populations taken separately.


Assuntos
Progressão da Doença , Índice de Gravidade de Doença , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/fisiopatologia , Pessoa de Meia-Idade , Masculino , Feminino , Adulto , Estudos de Coortes , Estudos Longitudinais , Idoso
17.
Mov Disord Clin Pract ; 11(5): 496-503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38419568

RESUMO

BACKGROUND: Fatigue is a prevalent and debilitating symptom in neurological disorders, including spinocerebellar ataxias (SCAs). However, the risk factors of fatigue in the SCAs as well as its impact have not been well investigated. OBJECTIVES: To study the prevalence of fatigue in SCAs, the factors contributing to fatigue, and the influence of fatigue on quality of life. METHODS: Fatigue was assessed in 418 participants with SCA1, SCA2, SCA3, and SCA6 from the Clinical Research Consortium for the Study of Cerebellar Ataxia using the Fatigue Severity Scale. We conducted multi-variable linear regression models to examine the factors contributing to fatigue as well as the association between fatigue and quality of life. RESULTS: Fatigue was most prevalent in SCA3 (52.6%), followed by SCA1 (36.7%), SCA6 (35.7%), and SCA2 (35.6%). SCA cases with fatigue had more severe ataxia and worse depressive symptoms. In SCA3, those with fatigue had a longer disease duration and longer pathological CAG repeat numbers. In multi-variable models, depressive symptoms, but not ataxia severity, were associated with more severe fatigue. Fatigue, independent of ataxia and depression, contributed to worse quality of life in SCA3 and SCA6 at baseline, and fatigue continued affecting quality of life throughout the disease course in all types of SCA. CONCLUSIONS: Fatigue is a common symptom in SCAs and is closely related to depression. Fatigue significantly impacts patients' quality of life. Therefore, screening for fatigue should be considered a part of standard clinical care for SCAs.


Assuntos
Fadiga , Qualidade de Vida , Ataxias Espinocerebelares , Humanos , Qualidade de Vida/psicologia , Ataxias Espinocerebelares/psicologia , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/epidemiologia , Masculino , Fadiga/psicologia , Fadiga/epidemiologia , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Índice de Gravidade de Doença , Prevalência , Depressão/epidemiologia , Depressão/psicologia
18.
Ann Neurol ; 71(4): 487-97, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22522441

RESUMO

OBJECTIVE: Friedreich ataxia (FA) is the most common ataxia and results from an expanded GAA repeat in the first intron of FXN. This leads to epigenetic modifications and reduced frataxin. We investigated the relationships between genetic, epigenetic, and clinical parameters in a large case-control study of FA. METHODS: Clinical data and samples were obtained from individuals with FA during annual visits to our dedicated FA clinic. GAA expansions were evaluated by polymerase chain reaction (PCR) and restriction endonuclease digest. DNA methylation was measured using bisulfite-based EpiTYPER MassARRAY (Sequenom, San Diego, CA). FXN expression was determined using real-time reverse transcriptase PCR. Significant correlations between the different parameters were examined using the nonparametric Spearman rank correlation coefficient, as well as univariate and multivariate regression modeling. RESULTS: Characteristic DNA methylation was identified upstream and downstream of the expansion, and validated in an independent FA cohort. Univariate and multivariate analyses showed significant inverse correlations between upstream methylation and FXN expression, and variation in downstream methylation and age of onset. FXN expression also inversely correlated with the Friedreich Ataxia Rating Scale score, an indicator of disease severity. INTERPRETATION: These novel findings provide compelling evidence for the link between the GAA expansion, the DNA methylation profile, FXN expression, and clinical outcome in FA. Epigenetic profiling of FXN could be used to gain greater insight into disease onset and progression, but also as a biomarker to learn more about specific treatment responses and pharmacological mechanism(s). This work also highlights the potential for developing therapies aimed at increasing frataxin levels to treat this debilitating disease.


Assuntos
Metilação de DNA/genética , Ataxia de Friedreich/genética , Marcadores Genéticos/genética , Proteínas de Ligação ao Ferro/genética , Expansão das Repetições de Trinucleotídeos/genética , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Progressão da Doença , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sequências Repetitivas de Ácido Nucleico , Adulto Jovem , Frataxina
20.
Neurology ; 100(17): e1836-e1848, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36797067

RESUMO

BACKGROUND AND OBJECTIVES: In spinocerebellar ataxia, ataxia onset can be preceded by mild clinical manifestation, cerebellar and/or brainstem alterations, or biomarker modifications. READISCA is a prospective, longitudinal observational study of patients with spinocerebellar ataxia type 1 (SCA1) and 3 (SCA3) to provide essential markers for therapeutic interventions. We looked for clinical, imaging, or biological markers that are present at an early stage of the disease. METHODS: We enrolled carriers of a pathologic ATXN1 or ATXN3 expansion and controls from 18 US and 2 European ataxia referral centers. Clinical, cognitive, quantitative motor, neuropsychological measures and plasma neurofilament light chain (NfL) measurements were compared between expansion carriers with and without ataxia and controls. RESULTS: We enrolled 200 participants: 45 carriers of a pathologic ATXN1 expansion (31 patients with ataxia [median Scale for the Assessment and Rating of Ataxia: 9; 7-10] and 14 expansion carriers without ataxia [1; 0-2]) and 116 carriers of a pathologic ATXN3 expansion (80 patients with ataxia [7; 6-9] and 36 expansion carriers without ataxia [1; 0-2]). In addition, we enrolled 39 controls who did not carry a pathologic expansion in ATXN1 or ATXN3. Plasma NfL levels were significantly higher in expansion carriers without ataxia than controls, despite similar mean age (controls: 5.7 pg/mL, SCA1: 18.0 pg/mL [p < 0.0001], SCA3: 19.8 pg/mL [p < 0.0001]). Expansion carriers without ataxia differed from controls by significantly more upper motor signs (SCA1 p = 0.0003, SCA3 p = 0.003) and by the presence of sensor impairment and diplopia in SCA3 (p = 0.0448 and 0.0445, respectively). Functional scales, fatigue and depression scores, swallowing difficulties, and cognitive impairment were worse in expansion carriers with ataxia than those without ataxia. Ataxic SCA3 participants showed extrapyramidal signs, urinary dysfunction, and lower motor neuron signs significantly more often than expansion carriers without ataxia. DISCUSSION: READISCA showed the feasibility of harmonized data acquisition in a multinational network. NfL alterations, early sensory ataxia, and corticospinal signs were quantifiable between preataxic participants and controls. Patients with ataxia differed in many parameters from controls and expansion carriers without ataxia, with a graded increase of abnormal measures from control to preataxic to ataxic cohorts. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov NCT03487367.


Assuntos
Ataxia Cerebelar , Doença de Machado-Joseph , Ataxias Espinocerebelares , Humanos , Estudos Prospectivos , Cerebelo , Biomarcadores , Doença de Machado-Joseph/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA