Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401539

RESUMO

Interest in measuring displacement gradients, such as rotation and strain, is growing in many areas of geophysical research. This results in an urgent demand for reliable and field-deployable instruments measuring these quantities. In order to further establish a high-quality standard for rotation and strain measurements in seismology, we organized a comparative sensor test experiment that took place in November 2019 at the Geophysical Observatory of the Ludwig-Maximilians University Munich in Fürstenfeldbruck, Germany. More than 24 different sensors, including three-component and single-component broadband rotational seismometers, six-component strong-motion sensors and Rotaphone systems, as well as the large ring laser gyroscopes ROMY and a Distributed Acoustic Sensing system, were involved in addition to 14 classical broadband seismometers and a 160 channel, 4.5 Hz geophone chain. The experiment consisted of two parts: during the first part, the sensors were co-located in a huddle test recording self-noise and signals from small, nearby explosions. In a second part, the sensors were distributed into the field in various array configurations recording seismic signals that were generated by small amounts of explosive and a Vibroseis truck. This paper presents details on the experimental setup and a first sensor performance comparison focusing on sensor self-noise, signal-to-noise ratios, and waveform similarities for the rotation rate sensors. Most of the sensors show a high level of coherency and waveform similarity within a narrow frequency range between 10 Hz and 20 Hz for recordings from a nearby explosion signal. Sensor as well as experiment design are critically accessed revealing the great need for reliable reference sensors.

2.
Nat Commun ; 12(1): 6553, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772954

RESUMO

The nature of the lower crust and the crust-mantle transition is fundamental to Earth sciences. Transformation of lower crustal rocks into eclogite facies is usually expected to result in lower crustal delamination. Here we provide compelling evidence for long-lasting presence of lower crustal eclogite below the seismic Moho. Our new wide-angle seismic data from the Paleoproterozoic Fennoscandian Shield identify a 6-8 km thick body with extremely high velocity (Vp ~ 8.5-8.6 km/s) and high density (>3.4 g/cm3) immediately beneath equally thinned high-velocity (Vp ~ 7.3-7.4 km/s) lowermost crust, which extends over >350 km distance. We relate this observed structure to partial (50-70%) transformation of part of the mafic lowermost crustal layer into eclogite facies during Paleoproterozoic orogeny without later delamination. Our findings challenge conventional models for the role of lower crustal eclogitization and delamination in lithosphere evolution and for the long-term stability of cratonic crust.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA