Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(36): e2303867120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639587

RESUMO

Neutrophils store microbicidal glycoproteins in cytosolic granules to fight intruding pathogens, but their granule distribution and formation mechanism(s) during granulopoiesis remain unmapped. Herein, we comprehensively profile the neutrophil N-glycoproteome with spatiotemporal resolution by analyzing four key types of intracellular organelles isolated from blood-derived neutrophils and during their maturation from bone marrow-derived progenitors using a glycomics-guided glycoproteomics approach. Interestingly, the organelles of resting neutrophils exhibited distinctive glycophenotypes including, most strikingly, highly truncated N-glycans low in α2,6-sialylation and Lewis fucosylation decorating a diverse set of microbicidal proteins (e.g., myeloperoxidase, azurocidin, neutrophil elastase) in the azurophilic granules. Excitingly, proteomics and transcriptomics data from discrete myeloid progenitor stages revealed that profound glycoproteome remodeling underpins the promyelocytic-to-metamyelocyte transition and that the glycophenotypic differences are driven primarily by dynamic changes in protein expression and less by changes within the glycosylation machinery. Notable exceptions were the oligosaccharyltransferase subunits responsible for initiation of N-glycoprotein biosynthesis that were strongly expressed in early myeloid progenitors correlating with relatively high levels of glycosylation of the microbicidal proteins in the azurophilic granules. Our study provides spatiotemporal insights into the complex neutrophil N-glycoproteome featuring intriguing organelle-specific N-glycosylation patterns formed by dynamic glycoproteome remodeling during the early maturation stages of the myeloid progenitors.


Assuntos
Neutrófilos , Proteoma , Glicosilação , Cognição , Grânulos Citoplasmáticos
2.
Eur J Immunol ; 54(2): e2350623, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972111

RESUMO

Pseudomonas aeruginosa is a Gram-negative bacterium and an opportunistic pathogen ubiquitously present throughout nature. LecB, a fucose-, and mannose-binding lectin, is a prominent virulence factor of P. aeruginosa, which can be expressed on the bacterial surface but also be secreted. However, the LecB interaction with human immune cells remains to be characterized. Neutrophils comprise the first line of defense against infections and their production of reactive oxygen species (ROS) and release of extracellular traps (NETs) are critical antimicrobial mechanisms. When profiling the neutrophil glycome we found several glycoconjugates on granule and plasma membranes that could potentially act as LecB receptors. In line with this, we here show that soluble LecB can activate primed neutrophils to produce high levels of intracellular ROS (icROS), an effect that was inhibited by methyl fucoside. On the other hand, soluble LecB inhibits P. aeruginosa-induced icROS production. In support of that, during phagocytosis of wild-type and LecB-deficient P. aeruginosa, bacteria with LecB induced less icROS production as compared with bacteria lacking the lectin. Hence, LecB can either induce or inhibit icROS production in neutrophils depending on the circumstances, demonstrating a novel and potential role for LecB as an immunomodulator of neutrophil functional responses.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Humanos , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lectinas
3.
EMBO Rep ; 24(11): e57571, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37795769

RESUMO

The peptide toxin candidalysin, secreted by Candida albicans hyphae, promotes stimulation of neutrophil extracellular traps (NETs). However, candidalysin alone triggers a distinct mechanism for NET-like structures (NLS), which are more compact and less fibrous than canonical NETs. Candidalysin activates NADPH oxidase and calcium influx, with both processes contributing to morphological changes in neutrophils resulting in NLS formation. NLS are induced by leucotoxic hypercitrullination, which is governed by calcium-induced protein arginine deaminase 4 activation and initiation of intracellular signalling events in a dose- and time-dependent manner. However, activation of signalling by candidalysin does not suffice to trigger downstream events essential for NET formation, as demonstrated by lack of lamin A/C phosphorylation, an event required for activation of cyclin-dependent kinases that are crucial for NET release. Candidalysin-triggered NLS demonstrate anti-Candida activity, which is resistant to nuclease treatment and dependent on the deprivation of Zn2+ . This study reveals that C. albicans hyphae releasing candidalysin concurrently trigger canonical NETs and NLS, which together form a fibrous sticky network that entangles C. albicans hyphae and efficiently inhibits their growth.


Assuntos
Candida albicans , Armadilhas Extracelulares , Candida albicans/metabolismo , Armadilhas Extracelulares/metabolismo , Cálcio/metabolismo , Proteínas Fúngicas/metabolismo
4.
Eur J Clin Pharmacol ; 80(5): 717-727, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353689

RESUMO

PURPOSE: AlzeCure Pharma AB is developing novel positive allosteric modulators of Trk-receptors for treatment of Alzheimer's disease, depression, other psychiatric conditions and other disorders where cognition is impaired. The preceding candidate drug ACD855 was shown to have a too long half-life in humans to allow further development. To de-risk the development of the follow-up compound ACD856, the oral single ascending dose study of ACD856 in humans was preceded by an intravenous microdose study, assessing the elimination half-life in plasma. METHODS: A phase 0 study with a microdose of ACD856 (0.100 mg), was conducted in six healthy male subjects all receiving ACD856. Sequentially, a randomized, placebo-controlled, double-blind Phase I single ascending oral dose study (1 - 150 mg) was conducted, including 56 healthy subjects. Both studies assessed the safety and tolerability, as well as the PK properties of ACD856 after single dose intravenous and oral administration. RESULTS: ACD856 was well tolerated with no treatment emergent, or dose related adverse events or other safety assessments. In the microdose study, ACD856 exhibited a bi-exponential plasma decline, low distribution volume, low plasma clearance with a half-life of approximately 20 hours. Orally, ACD856 exhibited rapid absorption, an almost complete bioavailability and a dose proportional increase in exposure. While the Cmax was lowered and delayed by food intake, the effect on plasma half-life and the overall bioavailability was low. No renal elimination of ACD856 was detected. CONCLUSION: The prediction proved accurate demonstrating the value of conducting a microdose study prior to ascending dose studies. TRIAL REGISTRATION: NCT05783830 March 24, 2023 (microdose study, retrospectively registered) and NCT05077631 October 14, 2021 (single ascending dose study).


Assuntos
Voluntários Saudáveis , Humanos , Masculino , Disponibilidade Biológica , Área Sob a Curva , Administração Oral , Meia-Vida , Método Duplo-Cego , Relação Dose-Resposta a Droga
5.
Glycobiology ; 33(6): 503-511, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37073717

RESUMO

Among the responders to microbial invasion, neutrophils represent the earliest and perhaps the most important immune cells that contribute to host defense with the primary role to kill invading microbes using a plethora of stored anti-microbial molecules. One such process is the production of reactive oxygen species (ROS) by the neutrophil enzyme complex NADPH-oxidase, which can be assembled and active either extracellularly or intracellularly in phagosomes (during phagocytosis) and/or granules (in the absence of phagocytosis). One soluble factor modulating the interplay between immune cells and microbes is galectin-3 (gal-3), a carbohydrate-binding protein that regulates a wide variety of neutrophil functions. Gal-3 has been shown to potentiate neutrophil interaction with bacteria, including Staphylococcus aureus, and is also a potent activator of the neutrophil respiratory burst, inducing large amounts of granule-localized ROS in primed cells. Herein, the role of gal-3 in regulating S. aureus phagocytosis and S. aureus-induced intracellular ROS was analyzed by imaging flow cytometry and luminol-based chemiluminescence, respectively. Although gal-3 did not interfere with S. aureus phagocytosis per se, it potently inhibited phagocytosis-induced intracellular ROS production. Using the gal-3 inhibitor GB0139 (TD139) and carbohydrate recognition domain of gal-3 (gal-3C), we found that the gal-3-induced inhibitory effect on ROS production was dependent on the carbohydrate recognition domain of the lectin. In summary, this is the first report of an inhibitory role of gal-3 in regulating phagocytosis-induced ROS production.


Assuntos
Neutrófilos , Staphylococcus aureus , Humanos , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Galectina 3/metabolismo , Explosão Respiratória , Fagocitose
6.
Glycobiology ; 33(12): 1128-1138, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37656214

RESUMO

Chronic obstructive pulmonary disease (COPD) kills millions of people annually and patients suffering from exacerbations of this disorder display high morbidity and mortality. The clinical course of COPD is associated with dysbiosis and infections, but the underlying mechanisms are poorly understood. Glycosylation of proteins play roles in regulating interactions between microbes and immune cells, and knowledge on airway glycans therefore contribute to the understanding of infections. Furthermore, glycans have biomarker potential for identifying smokers with enhanced risk for developing COPD as well as COPD subgroups. Here, we characterized the N-glycosylation in the lower airways of healthy never-smokers (HNS, n = 5) and long-term smokers (LTS) with (LTS+, n = 4) and without COPD (LTS-, n = 8). Using mass spectrometry, we identified 57 highly confident N-glycan structures whereof 38 oligomannose, complex, and paucimannose type glycans were common to BAL samples from HNS, LTS- and LTS+ groups. Hybrid type N-glycans were identified only in the LTS+ group. Qualitatively and quantitatively, HNS had lower inter-individual variation between samples compared to LTS- or LTS+. Cluster analysis of BAL N-glycosylation distinguished LTS from HNS. Correlation analysis with clinical parameters revealed that complex N-glycans were associated with health and absence of smoking whereas oligomannose N-glycans were associated with smoking and disease. The N-glycan profile from monocyte-derived macrophages differed from the BAL N-glycan profiles. In conclusion, long-term smokers display substantial alterations of N-glycosylation in the bronchoalveolar space, and the hybrid N-glycans identified only in long-term smokers with COPD deserve to be further studied as potential biomarkers.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Fumantes , Humanos , Glicosilação , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumar , Biomarcadores/metabolismo , Polissacarídeos , Líquido da Lavagem Broncoalveolar/química
7.
J Biol Chem ; 296: 100144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33273015

RESUMO

Myeloperoxidase (MPO) plays essential roles in neutrophil-mediated immunity via the generation of reactive oxidation products. Complex carbohydrates decorate MPO at discrete sites, but their functional relevance remains elusive. To this end, we have characterised the structure-biosynthesis-activity relationship of neutrophil MPO (nMPO). Mass spectrometry demonstrated that nMPO carries both characteristic under-processed and hyper-truncated glycans. Occlusion of the Asn355/Asn391-glycosylation sites and the Asn323-/Asn483-glycans, located in the MPO dimerisation zone, was found to affect the local glycan processing, thereby providing a molecular basis of the site-specific nMPO glycosylation. Native mass spectrometry, mass photometry and glycopeptide profiling revealed significant molecular complexity of diprotomeric nMPO arising from heterogeneous glycosylation, oxidation, chlorination and polypeptide truncation variants and a previously unreported low-abundance monoprotomer. Longitudinal profiling of maturing, mature, granule-separated and pathogen-stimulated neutrophils demonstrated that nMPO is dynamically expressed during granulopoiesis, unevenly distributed across granules and degranulated upon activation. We also show that proMPO-to-MPO maturation occurs during early/mid-stage granulopoiesis. While similar global MPO glycosylation was observed across conditions, the conserved Asn355-/Asn391-sites displayed elevated glycan hyper-truncation, which correlated with higher enzyme activities of MPO in distinct granule populations. Enzymatic trimming of the Asn355-/Asn391-glycans recapitulated the activity gain and showed that nMPO carrying hyper-truncated glycans at these positions exhibits increased thermal stability, polypeptide accessibility and ceruloplasmin-mediated inhibition potential relative to native nMPO. Finally, molecular modelling revealed that hyper-truncated Asn355-glycans positioned in the MPO-ceruloplasmin interface are critical for uninterrupted inhibition. Here, through an innovative and comprehensive approach, we report novel functional roles of MPO glycans, providing new insight into neutrophil-mediated immunity.


Assuntos
Grânulos Citoplasmáticos/enzimologia , Glicopeptídeos/metabolismo , Neutrófilos/enzimologia , Peroxidase/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Glicopeptídeos/química , Glicosilação , Humanos
8.
Cell Microbiol ; 23(8): e13348, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33913592

RESUMO

Fusobacterium nucleatum is a gram-negative and anaerobic oral commensal that is implicated in inflammatory conditions of the tooth-supporting structures, that is, periodontal diseases. One of the main characteristics of these conditions is an accumulation of neutrophil granulocytes in the gingival pockets where bacteria reside. Neutrophils are recruited to tissue-residing microbes by gradients of bacteria derived chemoattractants, and the cellular migration over the pocket epithelium into the gingival pocket is likely governed by chemoattractants released by the amino acid fermenting anaerobes typically colonising this site. However, the chemoattractants released by F. nucleatum and other oral anaerobes have long been unidentified. In the present study, we show that the major chemoattractants released during the growth of F. nucleatum are short chain fatty acids (SCFAs), primarily acetate and butyrate. These SCFAs, that are released at high levels as end-products of the metabolism of F. nucleatum, trigger chemotaxis of human neutrophils, as well as cytosolic Ca2+ signals, via free fatty acid receptor 2 (FFAR2). This finding establishes the SCFA-FFAR2 interaction as an important mechanism in the recruitment of neutrophils to the periodontal pocket, but could also be of importance in the pathogenesis of other medical conditions involving colonisation/infection of F. nucleatum.


Assuntos
Fusobacterium nucleatum , Neutrófilos , Fatores Quimiotáticos , Ácidos Graxos não Esterificados , Ácidos Graxos Voláteis , Humanos
9.
J Biol Chem ; 295(36): 12648-12660, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32665399

RESUMO

Protein glycosylation is essential to trafficking and immune functions of human neutrophils. During granulopoiesis in the bone marrow, distinct neutrophil granules are successively formed. Distinct receptors and effector proteins, many of which are glycosylated, are targeted to each type of granule according to their time of expression, a process called "targeting by timing." Therefore, these granules are time capsules reflecting different times of maturation that can be used to understand the glycosylation process during granulopoiesis. Herein, neutrophil subcellular granules were fractionated by Percoll density gradient centrifugation, and N- and O-glycans present in each compartment were analyzed by LC-MS. We found abundant paucimannosidic N-glycans and lack of O-glycans in the early-formed azurophil granules, whereas the later-formed specific and gelatinase granules and secretory vesicles contained complex N- and O-glycans with remarkably elongated N-acetyllactosamine repeats with Lewis epitopes. Immunoblotting and histochemical analysis confirmed the expression of Lewis X and sialyl-Lewis X in the intracellular granules and on the cell surface, respectively. Many glycans identified are unique to neutrophils, and their complexity increased progressively from azurophil granules to specific granules and then to gelatinase granules, suggesting temporal changes in the glycosylation machinery indicative of "glycosylation by timing" during granulopoiesis. In summary, this comprehensive neutrophil granule glycome map, the first of its kind, highlights novel granule-specific glycosylation features and is a crucial first step toward a better understanding of the mechanisms regulating protein glycosylation during neutrophil granulopoiesis and a more detailed understanding of neutrophil biology and function.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Antígenos CD15/metabolismo , Neutrófilos/metabolismo , Polissacarídeos/metabolismo , Antígeno Sialil Lewis X/metabolismo , Glicosilação , Humanos , Antígenos CD15/análise , Polissacarídeos/análise , Antígeno Sialil Lewis X/análise
10.
J Immunol ; 202(11): 3127-3134, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31109945

RESUMO

The phagocyte NADPH oxidase is responsible for the neutrophil's great capacity to produce reactive oxygen species (ROS). The NADPH oxidase can be assembled in the plasma membrane, as well as in membranes of intracellular vesicles, giving neutrophils the ability to direct ROS production to distinct subcellular sites. Neutrophil ROS contribute to microbial killing, trigger formation of neutrophil extracellular traps and appear to partake in inflammation control. Consequently, function-disrupting mutations in the NADPH oxidase lead to chronic granulomatous disease, characterized by severe infections and inflammatory disorders. Recent experimental data and description of a novel chronic granulomatous disease subtype (p40phox-deficiency) imply that ROS generated in intracellular compartments are key for NETosis and for controlling inflammatory signaling. We foresee boosted interest in intracellular ROS production. To fully understand where and how such ROS function, however, limitations of assay systems to measure ROS need to be appreciated, and the development of novel techniques/reagents would be highly useful.


Assuntos
Armadilhas Extracelulares/fisiologia , Espaço Intracelular/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/fisiologia , Oxidantes/metabolismo , Animais , Doença Granulomatosa Crônica/genética , Humanos , Mutação/genética , NADPH Oxidases/genética , Oxirredução , Estresse Oxidativo/imunologia , Fagocitose , Fosfoproteínas/genética , Espécies Reativas de Oxigênio/metabolismo
11.
Int J Mol Sci ; 21(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466527

RESUMO

Gout is an inflammatory disease caused by monosodium urate (MSU) crystals. The role of neutrophils in gout is less clear, although several studies have shown neutrophil extracellular trap (NET) formation in acutely inflamed joints of gout patients. MSU crystals are known to induce the production of reactive oxygen species (ROS) and NET formation in neutrophils isolated from blood, but there is inconclusive knowledge on the localization of ROS production as well as whether the ROS are required for NET formation. In this report we demonstrate that MSU crystals activate human neutrophils to produce ROS exclusively in intracellular compartments. Additionally, in vivo transmigrated neutrophils derived from experimental skin chambers displayed markedly increased ROS production as compared to resting blood neutrophils. We also confirmed that MSU stimulation potently induced NET formation, but this response was not primed in in vivo transmigrated neutrophils. In line with this we found that MSU-triggered NET formation was independent of ROS production and proceeded normally in neutrophils from patients with dysfunctional respiratory burst (chronic granulomatous disease (CGD) and complete myeloperoxidase (MPO) deficiency). Our data indicate that in vivo transmigrated neutrophils are markedly primed for oxidative responses to MSU crystals and that MSU triggered NET formation is independent of ROS production.


Assuntos
Gota/metabolismo , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adulto , Idoso , Células Cultivadas , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Neutrófilos/fisiologia , Peroxidase/metabolismo , Migração Transendotelial e Transepitelial , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia
12.
Respir Res ; 20(1): 1, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606211

RESUMO

BACKGROUND: Galectin-3 is a 32 kDa protein secreted by macrophages involved in processes such as cell activation, chemotaxis and phagocytosis. Galectin-3 has previously been shown to improve the ability of airway macrophages to ingest apoptotic cells (efferocytosis) in chronic obstructive pulmonary disease (COPD) and may be of interest in non-eosinophilic asthma (NEA) which is also characterised by impaired efferocytosis. It was hypothesised that the addition of exogenous galectin-3 to monocyte-derived macrophages (MDMs) derived from donors with NEA would enhance their ability to engulf apoptotic granulocytes. METHODS: Eligible non-smoking adults with asthma (n = 19), including 7 with NEA and healthy controls (n = 10) underwent a clinical assessment, venepuncture and sputum induction. MDMs were co-cultured with apoptotic granulocytes isolated from healthy donors with or without exogenous recombinant galectin-3 (50 µg/mL) and efferocytosis was assessed by flow cytometry. Galectin-3 expression and localisation in MDMs was visualised by immunofluorescence staining and fluorescence microscopy. Galectin-3, interleukin (IL)-6 and CXCL8 secretion were measured in cell culture supernatants by ELISA and cytometric bead array. RESULTS: Baseline efferocytosis (mean (±standard deviation)) was lower in participants with asthma (33.2 (±17.7)%) compared with healthy controls (45.3 (±15.9)%; p = 0.081). Efferocytosis did not differ between the participants with eosinophilic asthma (EA) (31.4 (±19.2)%) and NEA (28.7 (±21.5)%; p = 0.748). Addition of galectin-3 significantly improved efferocytosis in asthma, particularly in NEA (37.8 (±18.1)%) compared with baseline (30.4 (±19.7)%; p = 0.012). Efferocytosis was not associated with any of the clinical outcomes but was negatively correlated with sputum macrophage numbers (Spearman r = - 0.671; p = 0.017). Galectin-3 was diffusely distributed in most MDMs but formed punctate structures in 5% of MDMs. MDM galectin-3 secretion was lower in asthma (9.99 (2.67, 15.48) ng/mL) compared with the healthy controls (20.72 (11.28, 27.89) ng/mL; p = 0.044) while IL-6 and CXCL8 levels were similar. CONCLUSIONS: Galectin-3 modulates macrophage function in asthma, indicating a potential role for galectin-3 to reverse impaired efferocytosis in NEA.


Assuntos
Apoptose/fisiologia , Asma/metabolismo , Galectina 3/biossíntese , Granulócitos/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Adulto , Idoso , Apoptose/efeitos dos fármacos , Proteínas Sanguíneas , Células Cultivadas , Feminino , Galectina 3/farmacologia , Galectinas , Granulócitos/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Fagocitose/efeitos dos fármacos
13.
BMC Pediatr ; 19(1): 189, 2019 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176364

RESUMO

BACKGROUND: Neutrophils and eosinophils are multifunctional granulocytes derived from common myelocytic-committed progenitor cells. Severe congenital neutropenia 1 (SCN1) caused by ELANE mutations is a rare disease characterized by very low numbers of circulating neutrophils. Little is known about the functional characteristics of the SCN1 granulocytes, except that eosinophilia has been noticed in both bone marrow and peripheral blood. In this study, we profiled the number and function of granulocytes in patients suffering from SCN1. METHODS: Nine patients diagnosed with SCN1 were enrolled in this study and absolute counts of eosinophils and neutrophils from bone marrow aspirates and peripheral blood samples were analysed. In addition, Ficoll-Paque enriched granulocytes from patients and healthy controls were analysed for specific eosinophil and neutrophil markers using flow cytometry and for NADPH-oxidase activity-profile by chemiluminescence. RESULTS: Our data demonstrate a skewed granulocyte population in SCN1 patients dominated by eosinophils in both bone marrow and peripheral blood. The latter was detected only by blood smear examination, but not by automated blood analysers. Furthermore, we show that the SCN1 eosinophils exerted normal production of reactive oxygen species generated by the NADPH-oxidase, however the response was profoundly different from that of healthy control neutrophils. CONCLUSIONS: SCN1 patients with ELANE mutations suffer from neutropenia yet display eosinophilia in the bone marrow and blood, as revealed by smear examination but not by automatic blood analysers. The SCN1 eosinophils are functionally normal regarding production of reactive oxygen species (ROS). However, the ROS profile produced by eosinophils differs drastically from that of neutrophils isolated from the same blood donor, implying that the eosinophilia in SCN1 cannot compensate for the loss of neutrophils regarding ROS-mediated functions.


Assuntos
Células da Medula Óssea/fisiologia , Síndrome Congênita de Insuficiência da Medula Óssea/sangue , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Granulócitos/fisiologia , Elastase de Leucócito/genética , Neutropenia/congênito , Pré-Escolar , Códon de Terminação , Eosinófilos/enzimologia , Eosinófilos/fisiologia , Feminino , Mutação da Fase de Leitura , Glucose-6-Fosfatase/genética , Granulócitos/enzimologia , Humanos , Lactente , Contagem de Leucócitos , Masculino , NADPH Oxidases/metabolismo , Neutropenia/sangue , Neutropenia/genética , Neutrófilos/metabolismo , Neutrófilos/fisiologia , Mutação Puntual , Espécies Reativas de Oxigênio/metabolismo
14.
Biochim Biophys Acta ; 1863(6 Pt A): 1228-37, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26996596

RESUMO

Several G-protein-coupled receptors (GPCRs) can be activated or inhibited in a specific manner by membrane-permeable pepducins, which are short palmitoylated peptides with amino acid sequences identical to an intracellular domain of the receptor to be targeted. Unlike the endogenous P2Y2R agonist ATP, the P2Y2PalIC2 pepducin, which has an amino acid sequence corresponding to the second intracellular loop of the human ATP receptor (P2Y2R), activated the superoxide anion-generating NADPH-oxidase in neutrophils. In addition to having a direct effect on neutrophils, the P2Y2R pepducin converted naïve neutrophils to a primed state, which secondarily responded to ATP by producing superoxide. A pepducin with a peptide identical to the third intracellular loop of P2Y2R (P2Y2PalIC3) exhibited the same basic functions as P2Y2PalIC2, whereas one with a peptide that was identical to the first intracellular loop (P2Y2PalIC1) lacked these functions. The responses induced in neutrophils by the P2Y2R pepducins were not inhibited by the P2Y2R antagonist AR-C118925, and the receptor desensitization profile suggested the involvement of FPR2 rather than P2Y2R. Accordingly, antagonists/inhibitors of FPR2 attenuated the activities of the P2Y2R pepducins, which also selectively activated FPR2-overexpressing cells. In summary, we show that pepducins supposed to target P2Y2R activate human neutrophils through FPR2. We also show that the P2Y2PalIC2 pepducin can convert ATP from a non-activating agent to a potent neutrophil NADPH-oxidase activator. The molecular basis of this phenomenon involves cross-talk between the receptor/ligand pairs of P2Y2R/ATP and FPR2/P2Y2-pepducin.


Assuntos
Trifosfato de Adenosina/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Peptídeos/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Sequência de Aminoácidos , Ligação Competitiva/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Células HL-60 , Humanos , Ligantes , Dados de Sequência Molecular , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Oxigênio/metabolismo , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Receptor Cross-Talk/efeitos dos fármacos , Receptores Purinérgicos P2Y2/química , Fatores de Tempo
15.
Infect Immun ; 85(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28438975

RESUMO

Staphylococcus aureus is a major cause of skin and soft tissue infection. The bacterium expresses four major proteases that are emerging as virulence factors: aureolysin (Aur), V8 protease (SspA), staphopain A (ScpA), and staphopain B (SspB). We hypothesized that human galectin-3, a ß-galactoside-binding lectin involved in immune regulation and antimicrobial defense, is a target for these proteases and that proteolysis of galectin-3 is a novel immune evasion mechanism. Indeed, supernatants from laboratory strains and clinical isolates of S. aureus caused galectin-3 degradation. Similar proteolytic capacities were found in Staphylococcus epidermidis isolates but not in Staphylococcus saprophyticus Galectin-3-induced activation of the neutrophil NADPH oxidase was abrogated by bacterium-derived proteolysis of galectin-3, and SspB was identified as the major protease responsible. The impact of galectin-3 and protease expression on S. aureus virulence was studied in a murine skin infection model. In galectin-3+/+ mice, SspB-expressing S. aureus caused larger lesions and resulted in higher bacterial loads than protease-lacking bacteria. No such difference in bacterial load or lesion size was detected in galectin-3-/- mice, which overall showed smaller lesion sizes than the galectin-3+/+ animals. In conclusion, the staphylococcal protease SspB inactivates galectin-3, abrogating its stimulation of oxygen radical production in human neutrophils and increasing tissue damage during skin infection.


Assuntos
Proteínas de Bactérias/metabolismo , Galectina 3/metabolismo , Interações Hospedeiro-Patógeno , Serina Endopeptidases/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/patogenicidade , Animais , Carga Bacteriana , Proteínas Sanguíneas , Modelos Animais de Doenças , Galectinas , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteólise , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/patologia , Virulência
16.
J Immunol ; 195(3): 1121-8, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26085684

RESUMO

Polymorphonuclear neutrophils (PMNs) are innate effector cells with pivotal roles in pathogen recognition, phagocytosis, and eradication. However, their role in the development of subsequent immune responses is incompletely understood. This study aimed to identify mechanisms of relevance to the cross talk between human neutrophils and NK cells and its potential role in promoting adaptive immunity. TLR-stimulated PMNs were found to release soluble mediators to attract and activate NK cells in vitro. PMN-conditioned NK cells displayed enhanced cytotoxicity and cytokine production, and responded vigorously to ensuing stimulation with exogenous and endogenous IL-12. The neutrophil-induced activation of NK cells was prevented by caspase-1 inhibitors and by natural antagonists to IL-1 and IL-18, suggesting a role for the NOD-like receptor family pyrin domain containing-3 inflammasome. In addition, PMN-conditioned NK cells triggered the maturation of monocyte-derived dendritic cells, which promoted T cell proliferation and IFN-γ production. These data imply that neutrophils attract NK cells to sites of infection to convert these cells into an active state, which drives adaptive immune responses via maturation of dendritic cells. Our results add to a growing body of evidence that suggests a sophisticated role for neutrophils in orchestrating the immune response to pathogens.


Assuntos
Imunidade Adaptativa/imunologia , Comunicação Celular/imunologia , Células Dendríticas/citologia , Células Matadoras Naturais/imunologia , Neutrófilos/imunologia , Linfócitos T/imunologia , Proteínas de Transporte/imunologia , Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Células Dendríticas/imunologia , Humanos , Inflamassomos/imunologia , Interferon gama/biossíntese , Subunidade p35 da Interleucina-12/imunologia , Interleucina-18/antagonistas & inibidores , Interleucina-1beta/antagonistas & inibidores , Ativação Linfocitária/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR
17.
J Infect Dis ; 213(1): 139-48, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26136471

RESUMO

Staphylococcus aureus biofilms, a leading cause of persistent infections, are highly resistant to immune defenses and antimicrobial therapies. In the present study, we investigated the contribution of fibrin and staphylokinase (Sak) to biofilm formation. In both clinical S. aureus isolates and laboratory strains, high Sak-producing strains formed less biofilm than strains that lacked Sak, suggesting that Sak prevents biofilm formation. In addition, Sak induced detachment of mature biofilms. This effect depended on plasminogen activation by Sak. Host-derived fibrin, the main substrate cleaved by Sak-activated plasminogen, was a major component of biofilm matrix, and dissolution of this fibrin scaffold greatly increased susceptibility of biofilms to antibiotics and neutrophil phagocytosis. Sak also attenuated biofilm-associated catheter infections in mouse models. In conclusion, our results reveal a novel role for Sak-induced plasminogen activation that prevents S. aureus biofilm formation and induces detachment of existing biofilms through proteolytic cleavage of biofilm matrix components.


Assuntos
Biofilmes/efeitos dos fármacos , Metaloendopeptidases/metabolismo , Staphylococcus aureus/metabolismo , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Feminino , Fibrina/metabolismo , Masculino , Metaloendopeptidases/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Plasminogênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos
18.
Rheumatology (Oxford) ; 55(8): 1489-98, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27121779

RESUMO

OBJECTIVE: We aimed to investigate if aberrant intracellular production of NADPH oxidase-derived reactive oxygen species (ROS) in neutrophils is a disease mechanism in the autoinflammatory disease SAPHO syndrome, characterized by synovitis, acne, pustulosis, hyperostosis and osteitis, as has previously been suggested based on a family with SAPHO syndrome-like disease. METHODS: Neutrophil function was explored in a cohort of four patients with SAPHO syndrome, two of whom were sampled during both inflammatory and non-inflammatory phase. Intracellular neutrophil ROS production was determined by luminol-amplified chemiluminescence in response to phorbol myristate acetate. RESULTS: Cells from all patients produced normal amounts of ROS, both intra- and extracellularly, when compared with internal controls as well as with a large collection of healthy controls assayed in the laboratory over time (showing an extensive inter-personal variability in a normal population). Further, intracellular production of ROS increased during the inflammatory phase. Neutrophil activation markers were comparable between patients and controls. CONCLUSION: Dysfunctional generation of intracellular ROS in neutrophils is not a generalizable feature in SAPHO syndrome. Secondly, serum amyloid A appears to be a more sensitive inflammatory marker than CRP during improvement and relapses in SAPHO syndrome.


Assuntos
Síndrome de Hiperostose Adquirida/enzimologia , NADPH Oxidases/metabolismo , Neutrófilos/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Fase Aguda/metabolismo , Adolescente , Idoso , Apoptose/fisiologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Citocinas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , NADPH Oxidases/biossíntese , Recidiva , Regulação para Cima/fisiologia
20.
Exp Cell Res ; 336(2): 242-52, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26192818

RESUMO

Functional selectivity, a process by which G-protein coupled receptors (GPCRs) can activate one signaling route while avoiding another, is regulated by ligand-mediated stabilization of specific receptor states that modulate different downstream signaling events. We propose a novel mechanism for functional selectivity, induced by the endogenous P2Y2R agonist ATP and regulated at the signaling interface by the cytoskeleton. Upon ATP stimulation of human neutrophils, a transient rise in the cytosolic concentration of free Ca(2+) was not followed by activation of the superoxide anion-generating NADPH-oxidase. This was in contrast to signals generated through the formyl peptide receptor 1 (FPR1), as its activation was accompanied by both a mobilization of Ca(2+) and activation of the NADPH-oxidase. The phospholipase C/Ca(2+) signaling route is not modulated by the cytoskeleton-disrupting drug latrunculin A, but this drug was able to launch a new signaling route downstream of P2Y2R that led to NADPH-oxidase activation. The signaling downstream of P2Y2R was rapidly terminated and the receptors were desensitized; however, in contrast to desensitized FPR1, no P2Y2 receptor reactivation could be induced by latrunculin A. Thus, P2Y2R desensitization does not appear to involve the cytoskeleton, contrary to FPR1 desensitization. In summary, we hereby describe how ATP regulates functional selectivity via the cytoskeleton, leading to intracellular Ca(2+) increase, alone or with simultaneous NADPH-oxidase activation in neutrophils.


Assuntos
Trifosfato de Adenosina/farmacologia , Citoesqueleto/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/imunologia , Receptores Purinérgicos P2Y2/metabolismo , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cálcio/metabolismo , Células Cultivadas , Depsipeptídeos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Potenciais da Membrana/fisiologia , Ativação de Neutrófilo/efeitos dos fármacos , Toxina Pertussis/farmacologia , Receptores de Formil Peptídeo/metabolismo , Transdução de Sinais/fisiologia , Tiazolidinas/farmacologia , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA