Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199392

RESUMO

Coordination of four-limb movements during quadrupedal locomotion is controlled by supraspinal monoaminergic descending pathways, among which serotoninergic ones play a crucial role. Here we investigated the locomotor pattern during recovery from blockade of 5-HT7 or 5-HT2A receptors after intrathecal application of SB269970 or cyproheptadine in adult rats with chronic intrathecal cannula implanted in the lumbar spinal cord. The interlimb coordination was investigated based on electromyographic activity recorded from selected fore- and hindlimb muscles during rat locomotion on a treadmill. In the time of recovery after hindlimb transient paralysis, we noticed a presence of an unusual pattern of quadrupedal locomotion characterized by a doubling of forelimb stepping in relation to unaffected hindlimb stepping (2FL-1HL) after blockade of 5-HT7 receptors but not after blockade of 5-HT2A receptors. The 2FL-1HL pattern, although transient, was observed as a stable form of fore-hindlimb coupling during quadrupedal locomotion. We suggest that modulation of the 5-HT7 receptors on interneurons located in lamina VII with ascending projections to the forelimb spinal network can be responsible for the 2FL-1HL locomotor pattern. In support, our immunohistochemical analysis of the lumbar spinal cord demonstrated the presence of the 5-HT7 immunoreactive cells in the lamina VII, which were rarely 5-HT2A immunoreactive.


Assuntos
Locomoção/genética , Receptor 5-HT2A de Serotonina/genética , Receptores de Serotonina/genética , Traumatismos da Medula Espinal/genética , Animais , Ciproeptadina/farmacologia , Estimulação Elétrica , Eletromiografia , Membro Anterior/efeitos dos fármacos , Membro Anterior/fisiopatologia , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Humanos , Locomoção/efeitos dos fármacos , Região Lombossacral/fisiopatologia , Ratos , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptores de Serotonina/efeitos dos fármacos , Serotonina/genética , Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Coluna Vertebral/efeitos dos fármacos , Coluna Vertebral/fisiopatologia
2.
J Physiol ; 595(1): 301-320, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27393215

RESUMO

KEY POINTS: Experiments on neonatal rodent spinal cord showed that serotonin (5-HT), acting via 5-HT7 receptors, is required for initiation of locomotion and for controlling the action of interneurons responsible for inter- and intralimb coordination, but the importance of the 5-HT system in adult locomotion is not clear. Blockade of spinal 5-HT7 receptors interfered with voluntary locomotion in adult rats and fictive locomotion in paralysed decerebrate rats with no afferent feedback, consistent with a requirement for activation of descending 5-HT neurons for production of locomotion. The direct control of coordinating interneurons by 5-HT7 receptors observed in neonatal animals was not found during fictive locomotion, revealing a developmental shift from direct control of locomotor interneurons in neonates to control of afferent input from the moving limb in adults. An understanding of the afferents controlled by 5-HT during locomotion is required for optimal use of rehabilitation therapies involving the use of serotonergic drugs. ABSTRACT: Serotonergic pathways to the spinal cord are implicated in the control of locomotion based on studies using serotonin type 7 (5-HT7 ) receptor agonists and antagonists and 5-HT7 receptor knockout mice. Blockade of these receptors is thought to interfere with the activity of coordinating interneurons, a conclusion derived primarily from in vitro studies on isolated spinal cord of neonatal rats and mice. Developmental changes in the effects of serotonin (5-HT) on spinal neurons have recently been described, and there is increasing data on control of sensory input by 5-HT7 receptors on dorsal root ganglion cells and/or dorsal horn neurons, leading us to determine the effects of 5-HT7 receptor blockade on voluntary overground locomotion and on locomotion without afferent input from the moving limb (fictive locomotion) in adult animals. Intrathecal injections of the selective 5-HT7 antagonist SB269970 in adult intact rats suppressed locomotion by partial paralysis of hindlimbs. This occurred without a direct effect on motoneurons as revealed by an investigation of reflex activity. The antagonist disrupted intra- and interlimb coordination during locomotion in all intact animals but not during fictive locomotion induced by stimulation of the mesencephalic locomotor region (MLR). MLR-evoked fictive locomotion was transiently blocked, then the amplitude and frequency of rhythmic activity were reduced by SB269970, consistent with the notion that the MLR activates 5-HT neurons, leading to excitation of central pattern generator neurons with 5-HT7 receptors. Effects on coordination in adults required the presence of afferent input, suggesting a switch to 5-HT7 receptor-mediated control of sensory pathways during development.


Assuntos
Locomoção/fisiologia , Receptores de Serotonina/fisiologia , Serotonina/fisiologia , Animais , Estimulação Elétrica , Feminino , Membro Posterior/fisiologia , Locomoção/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Fenóis/farmacologia , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Serotonina/genética , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Antagonistas da Serotonina/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , Sulfonamidas/farmacologia
3.
Histochem Cell Biol ; 143(2): 143-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25212659

RESUMO

The gelatinases MMP-9 and MMP-2 have been implicated in skeletal muscle adaptation to training; however, their specific role(s) in the different muscle types are only beginning to be unraveled. Recently, we found that treadmill running increased the activity and/or expression of these enzymes in myonuclei and in activated satellite cells of the soleus (Sol), but not extensor digitorum longus (EDL) muscles on the fifth day of training of adult rats. Here, we asked whether the gelatinases can be involved in physical exercise-induced adaptation of the neuromuscular compartment. To determine the subcellular localization of the gelatinolytic activity, we used high-resolution in situ zymography and immunofluorescence techniques. In both control and trained muscles, strong gelatinolytic activity was associated with myelin sheaths within intramuscular nerve twigs. In EDL, but not Sol, there was an increase in the gelatinolytic activity at the postsynaptic domain of the neuromuscular junction (NMJ). The increased activity was found within punctate structures situated in the vicinity of synaptic cleft of the NMJ, colocalizing with a marker of endoplasmic reticulum. Our results support the hypothesis that the gelatinolytic activity at the NMJ may be involved in NMJ plasticity.


Assuntos
Gelatinases/genética , Gelatinases/metabolismo , Regulação Enzimológica da Expressão Gênica , Junção Neuromuscular/enzimologia , Condicionamento Físico Animal , Animais , Imuno-Histoquímica , Masculino , Ratos , Ratos Wistar
4.
Front Neural Circuits ; 14: 14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425760

RESUMO

Applying serotonergic (5-HT) agonists or grafting of fetal serotonergic cells into the spinal cord improves locomotion after spinal cord injury. Little is known about the role of 5-HT receptors in the control of voluntary locomotion, so we administered inverse agonists of 5-HT2 (Cyproheptadine; Cypr), 5-HT2A neutral antagonist (Volinanserin; Volin), 5-HT2C neutral antagonist (SB 242084), and 5-HT2B/2C inverse agonist (SB 206553) receptors intrathecally in intact rats and monitored their effects on unrestrained locomotion. An intrathecal cannula was introduced at the low thoracic level and pushed caudally until the tip reached the L2/L3 or L5/L6 spinal segments. Locomotor performance was evaluated using EMG activity of hindlimb muscles during locomotion on a 2 m long runway. Motoneuron excitability was estimated using EMG recordings during dorsi- and plantar flexion at the ankle. Locomotion was dramatically impaired after the blockage of 5-HT2A receptors. The effect of Cypr was more pronounced than that of Volin since in the L5/L6 rats Cypr (but not Volin) induced significant alteration of the strength of interlimb coordination followed by total paralysis. These agents significantly decreased locomotor EMG amplitude and abolished or substantially decreased stretch reflexes. Blocking 5-HT2B/2C receptors had no effect either on locomotion or reflexes. We suggest that in intact rats serotonin controls timing and amplitude of muscle activity by acting on 5-HT2A receptors on both CPG interneurons and motoneurons, while 5-HT2B/2C receptors are not involved in control of the locomotor pattern in lumbar spinal cord.


Assuntos
Locomoção/fisiologia , Receptor 5-HT2A de Serotonina/fisiologia , Receptor 5-HT2B de Serotonina/fisiologia , Receptor 5-HT2C de Serotonina/fisiologia , Antagonistas do Receptor 5-HT2 de Serotonina/administração & dosagem , Medula Espinal/fisiologia , Animais , Agonismo Inverso de Drogas , Eletromiografia/efeitos dos fármacos , Eletromiografia/métodos , Feminino , Injeções Espinhais , Locomoção/efeitos dos fármacos , Ratos , Ratos Wistar , Medula Espinal/efeitos dos fármacos
6.
PLoS One ; 12(1): e0170235, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28095499

RESUMO

The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2-8 and 10-28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15-29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23-33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24-28 vs 8 and 23-26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement.


Assuntos
Locomoção/efeitos dos fármacos , Músculo Esquelético/fisiologia , Compressão Nervosa/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Riluzol/farmacologia , Nervo Isquiático/lesões , Animais , Animais Recém-Nascidos , Feminino , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Ratos , Ratos Wistar
7.
Front Neural Circuits ; 11: 34, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28579945

RESUMO

Oscillatory rhythms in local field potentials (LFPs) are thought to coherently bind cooperating neuronal ensembles to produce behaviors, including locomotion. LFPs recorded from sites that trigger locomotion have been used as a basis for identification of appropriate targets for deep brain stimulation (DBS) to enhance locomotor recovery in patients with gait disorders. Theta band activity (6-12 Hz) is associated with locomotor activity in locomotion-inducing sites in the hypothalamus and in the hippocampus, but the LFPs that occur in the functionally defined mesencephalic locomotor region (MLR) during locomotion have not been determined. Here we record the oscillatory activity during treadmill locomotion in MLR sites effective for inducing locomotion with electrical stimulation in rats. The results show the presence of oscillatory theta rhythms in the LFPs recorded from the most effective MLR stimulus sites (at threshold ≤60 µA). Theta activity increased at the onset of locomotion, and its power was correlated with the speed of locomotion. In animals with higher thresholds (>60 µA), the correlation between locomotor speed and theta LFP oscillations was less robust. Changes in the gamma band (previously recorded in vitro in the pedunculopontine nucleus (PPN), thought to be a part of the MLR) were relatively small. Controlled locomotion was best achieved at 10-20 Hz frequencies of MLR stimulation. Our results indicate that theta and not delta or gamma band oscillation is a suitable biomarker for identifying the functional MLR sites.


Assuntos
Potencial Evocado Motor/fisiologia , Locomoção/fisiologia , Mesencéfalo/fisiologia , Ritmo Teta/fisiologia , Análise de Variância , Animais , Biofísica , Mapeamento Encefálico , Modelos Animais de Doenças , Estimulação Elétrica , Eletromiografia , Comportamento Exploratório/fisiologia , Feminino , Análise de Fourier , Proteína Glial Fibrilar Ácida/metabolismo , Membro Posterior/inervação , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Vigília
8.
PLoS One ; 10(11): e0143602, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26606275

RESUMO

Lateral thoracic hemisection of the rodent spinal cord is a popular model of spinal cord injury, in which the effects of various treatments, designed to encourage locomotor recovery, are tested. Nevertheless, there are still inconsistencies in the literature concerning the details of spontaneous locomotor recovery after such lesions, and there is a lack of data concerning the quality of locomotion over a long time span after the lesion. In this study, we aimed to address some of these issues. In our experiments, locomotor recovery was assessed using EMG and CatWalk recordings and analysis. Our results showed that after hemisection there was paralysis in both hindlimbs, followed by a substantial recovery of locomotor movements, but even at the peak of recovery, which occurred about 4 weeks after the lesion, some deficits of locomotion remained present. The parameters that were abnormal included abduction, interlimb coordination and speed of locomotion. Locomotor performance was stable for several weeks, but about 3-4 months after hemisection secondary locomotor impairment was observed with changes in parameters, such as speed of locomotion, interlimb coordination, base of hindlimb support, hindlimb abduction and relative foot print distance. Histological analysis of serotonergic innervation at the lumbar ventral horn below hemisection revealed a limited restoration of serotonergic fibers on the ipsilateral side of the spinal cord, while on the contralateral side of the spinal cord it returned to normal. In addition, the length of these fibers on both sides of the spinal cord correlated with inter- and intralimb coordination. In contrast to data reported in the literature, our results show there is not full locomotor recovery after spinal cord hemisection. Secondary deterioration of certain locomotor functions occurs with time in hemisected rats, and locomotor recovery appears partly associated with reinnervation of spinal circuitry by serotonergic fibers.


Assuntos
Locomoção , Desempenho Psicomotor , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Medula Espinal/fisiopatologia , Animais , Células do Corno Anterior/metabolismo , Modelos Animais de Doenças , Eletromiografia , Feminino , Marcha , Ratos , Serotonina/metabolismo , Medula Espinal/patologia , Medula Espinal/cirurgia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/cirurgia
9.
Exp Neurol ; 247: 572-81, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23481546

RESUMO

In rodent models of spinal cord injury, there is increasing evidence that activation of the locomotor central pattern generator (CPG) below the site of injury with 5-hydroxytryptamine (5-HT) agonists improves locomotor recovery and restores coordination. A promising means of replacing 5-HT control of locomotion is to graft brainstem 5-HT neurons into the spinal cord below the level of the spinal cord injury. However, it is not known whether this approach improves limb coordination because recovery of coordinated stepping has not been documented in detail in previous studies employing this transplantation strategy. Here, adult rats with complete spinal cord transections at the T9/10 level were grafted with E14 fetal neurons from the medulla at the T10/11 vertebra level one month after injury. The B1, B2 and B3 fetal anlagen of brainstem 5-HT neurons, a grouping that included the presumed precursors of recently described 5-HT locomotor command neurons, were used in these grafts. EMG and video recordings of treadmill locomotion evoked by tail stimulation showed full recovery of inter- and intralimb coordination in the grafted rats. We showed, using systemically applied antagonists, that 5-HT2 and 5-HT7 receptors mediate the improved locomotion after grafting, but through actions on different populations of spinal locomotor neurons. Specifically, 5-HT2 receptors control CPG activation as well as motoneuron output, while 5-HT7 receptors contribute primarily to activity of the locomotor CPG. These results are consistent with the roles for these receptors during locomotion in intact rodents and in rodent brainstem-spinal cord in vitro preparations.


Assuntos
Tronco Encefálico/transplante , Transplante de Tecido Fetal/métodos , Membro Posterior/fisiopatologia , Paraplegia , Desempenho Psicomotor/fisiologia , Serotonina/metabolismo , Traumatismos da Medula Espinal/complicações , Animais , Tronco Encefálico/citologia , Modelos Animais de Doenças , Eletromiografia , Embrião de Mamíferos , Feminino , Locomoção/efeitos dos fármacos , Paraplegia/etiologia , Paraplegia/patologia , Paraplegia/cirurgia , Fenóis/farmacologia , Ratos , Ratos Endogâmicos , Receptores 5-HT2 de Serotonina/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Antagonistas da Serotonina/farmacologia , Sulfonamidas/farmacologia
10.
J Neurotrauma ; 29(7): 1506-17, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22260361

RESUMO

Nerve injury in neonatal rats leads to considerable motoneuron death. We investigated whether treatment with riluzole (a presynaptic inhibitor of glutamate release) is able to enhance survival of motor units (MUs) in the slow soleus (Sol) and fast extensor digitorum longus (EDL) muscles after sciatic nerve crush in newborn rats. Examination of 3- to 4-month-old rats revealed a beneficial effect of riluzole treatment after injury carried out on the first day after birth. At this time increased MU survival occurred in both the Sol and EDL muscles. In rats with nerve injury carried out on the second day after birth, increased MU survival occurred only in the Sol. We conclude that although riluzole treatment can rescue motoneurons destined to die and improve muscle performance, its beneficial effect is age-dependent, and the difference between the rescue of Sol and EDL MUs may be due to the slower maturation of motoneurons to soleus muscle. These findings have important implications regarding the motoneuron properties required for riluzole's beneficial effect.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Riluzol/farmacologia , Neuropatia Ciática/tratamento farmacológico , Animais , Animais Recém-Nascidos , Axotomia/métodos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Feminino , Masculino , Neurônios Motores/patologia , Compressão Nervosa/métodos , Ratos , Ratos Wistar , Neuropatia Ciática/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA