RESUMO
By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals.
Assuntos
Encefalopatias , Deficiência Intelectual , Humanos , Encefalopatias/genética , Canais Iônicos/genética , Encéfalo , Deficiência Intelectual/genética , FenótipoRESUMO
The International Mouse Phenotyping Consortium (IMPC; https://www.mousephenotype.org/) web portal makes available curated, integrated and analysed knockout mouse phenotyping data generated by the IMPC project consisting of 85M data points and over 95,000 statistically significant phenotype hits mapped to human diseases. The IMPC portal delivers a substantial reference dataset that supports the enrichment of various domain-specific projects and databases, as well as the wider research and clinical community, where the IMPC genotype-phenotype knowledge contributes to the molecular diagnosis of patients affected by rare disorders. Data from 9,000 mouse lines and 750 000 images provides vital resources enabling the interpretation of the ignorome, and advancing our knowledge on mammalian gene function and the mechanisms underlying phenotypes associated with human diseases. The resource is widely integrated and the lines have been used in over 4,600 publications indicating the value of the data and the materials.
Assuntos
Bases de Dados Factuais , Modelos Animais de Doenças , Camundongos Knockout , Animais , Humanos , Camundongos , FenótipoRESUMO
PURPOSE: Existing resources that characterize the essentiality status of genes are based on either proliferation assessment in human cell lines, viability evaluation in mouse knockouts, or constraint metrics derived from human population sequencing studies. Several repositories document phenotypic annotations for rare disorders; however, there is a lack of comprehensive reporting on lethal phenotypes. METHODS: We queried Online Mendelian Inheritance in Man for terms related to lethality and classified all Mendelian genes according to the earliest age of death recorded for the associated disorders, from prenatal death to no reports of premature death. We characterized the genes across these lethality categories, examined the evidence on viability from mouse models and explored how this information could be used for novel gene discovery. RESULTS: We developed the Lethal Phenotypes Portal to showcase this curated catalog of human essential genes. Differences in the mode of inheritance, physiological systems affected, and disease class were found for genes in different lethality categories, as well as discrepancies between the lethal phenotypes observed in mouse and human. CONCLUSION: We anticipate that this resource will aid clinicians in the diagnosis of early lethal conditions and assist researchers in investigating the properties that make these genes essential for human development.
Assuntos
Genes Letais , Doenças Genéticas Inatas , Fenótipo , Humanos , Animais , Camundongos , Doenças Genéticas Inatas/genética , Bases de Dados Genéticas , Modelos Animais de Doenças , Genes Essenciais/genéticaRESUMO
Advances in sequencing and imaging technologies enable enhanced assessment in the prenatal space, with a goal to diagnose and predict the natural history of disease, to direct targeted therapies, and to implement clinical management, including transfer of care, election of supportive care, and selection of surgical interventions. The current lack of standardization and aggregation stymies variant interpretation and gene discovery, which hinders the provision of prenatal precision medicine, leaving clinicians and patients without an accurate diagnosis. With large amounts of data generated, it is imperative to establish standards for data collection, processing, and aggregation. Aggregated and homogeneously processed genetic and phenotypic data permits dissection of the genomic architecture of prenatal presentations of disease and provides a dataset on which data analysis algorithms can be tuned to the prenatal space. Here we discuss the importance of generating aggregate data sets and how the prenatal space is driving the development of interoperable standards and phenotype-driven tools.
Assuntos
Medicina de Precisão , Diagnóstico Pré-Natal , Gravidez , Feminino , Humanos , Fenótipo , Genômica , AlgoritmosRESUMO
Protein coding genes exhibit different degrees of intolerance to loss-of-function variation. The most intolerant genes, whose function is essential for cell or/and organism survival, inform on fundamental biological processes related to cell proliferation and organism development and provide a window on the molecular mechanisms of human disease. Here we present a brief overview of the resources and knowledge gathered around gene essentiality, from cancer cell lines to model organisms to human development. We outline the implications of using different sources of evidence and definitions to determine which genes are essential and highlight how information on the essentiality status of a gene can inform novel disease gene discovery and therapeutic target identification.
Assuntos
Genes Essenciais , Neoplasias , Humanos , Genes Essenciais/genética , Neoplasias/genéticaRESUMO
Technological advances in both genome sequencing and prenatal imaging are increasing our ability to accurately recognize and diagnose Mendelian conditions prenatally. Phenotype-driven early genetic diagnosis of fetal genetic disease can help to strategize treatment options and clinical preventive measures during the perinatal period, to plan in utero therapies, and to inform parental decision-making. Fetal phenotypes of genetic diseases are often unique and at present are not well understood; more comprehensive knowledge about prenatal phenotypes and computational resources have an enormous potential to improve diagnostics and translational research. The Human Phenotype Ontology (HPO) has been widely used to support diagnostics and translational research in human genetics. To better support prenatal usage, the HPO consortium conducted a series of workshops with a group of domain experts in a variety of medical specialties, diagnostic techniques, as well as diseases and phenotypes related to prenatal medicine, including perinatal pathology, musculoskeletal anomalies, neurology, medical genetics, hydrops fetalis, craniofacial malformations, cardiology, neonatal-perinatal medicine, fetal medicine, placental pathology, prenatal imaging, and bioinformatics. We expanded the representation of prenatal phenotypes in HPO by adding 95 new phenotype terms under the Abnormality of prenatal development or birth (HP:0001197) grouping term, and revised definitions, synonyms, and disease annotations for most of the 152 terms that existed before the beginning of this effort. The expansion of prenatal phenotypes in HPO will support phenotype-driven prenatal exome and genome sequencing for precision genetic diagnostics of rare diseases to support prenatal care.
Assuntos
Biologia Computacional , Placenta , Recém-Nascido , Humanos , Feminino , Gravidez , Biologia Computacional/métodos , Fenótipo , Doenças Raras , Sequenciamento do ExomaRESUMO
The International Mouse Phenotyping Consortium (IMPC) continues to expand the catalogue of mammalian gene function by conducting genome and phenome-wide phenotyping on knockout mouse lines. The extensive and standardized phenotype screens allow the identification of new potential models for human disease through cross-species comparison by computing the similarity between the phenotypes observed in the mutant mice and the human phenotypes associated to their orthologous loci in Mendelian disease. Here, we present an update on the novel disease models available from the most recent data release (DR10.0), with 5861 mouse genes fully or partially phenotyped and a total number of 69,982 phenotype calls reported. With approximately one-third of human Mendelian genes with orthologous null mouse phenotypes described, the range of available models relevant for human diseases keeps increasing. Among the breadth of new data, we identify previously uncharacterized disease genes in the mouse and additional phenotypes for genes with existing mutant lines mimicking the associated disorder. The automated and unbiased discovery of relevant models for all types of rare diseases implemented by the IMPC constitutes a powerful tool for human genetics and precision medicine.
Assuntos
Modelos Animais de Doenças , Fenótipo , Animais , Genoma , Humanos , Camundongos , Camundongos Knockout , Medicina de PrecisãoRESUMO
The International Mouse Phenotyping Consortium (IMPC) is building a catalogue of mammalian gene function by producing and phenotyping a knockout mouse line for every protein-coding gene. To date, the IMPC has generated and characterised 5186 mutant lines. One-third of the lines have been found to be non-viable and over 300 new mouse models of human disease have been identified thus far. While current bioinformatics efforts are focused on translating results to better understand human disease processes, IMPC data also aids understanding genetic function and processes in other species. Here we show, using gorilla genomic data, how genes essential to development in mice can be used to help assess the potentially deleterious impact of gene variants in other species. This type of analyses could be used to select optimal breeders in endangered species to maintain or increase fitness and avoid variants associated to impaired-health phenotypes or loss-of-function mutations in genes of critical importance. We also show, using selected examples from various mammal species, how IMPC data can aid in the identification of candidate genes for studying a condition of interest, deliver information about the mechanisms involved, or support predictions for the function of genes that may play a role in adaptation. With genotyping costs decreasing and the continued improvements of bioinformatics tools, the analyses we demonstrate can be routinely applied.
RESUMO
The use of standardised phenotyping screens to identify abnormal phenotypes in mouse knockouts, together with the use of ontologies to describe such phenotypic features, allows the implementation of an automated and unbiased pipeline to identify new models of disease by performing phenotype comparisons across species. Using data from the International Mouse Phenotyping Consortium (IMPC), approximately half of mouse mutants are able to mimic, at least partially, the human ortholog disease phenotypes as computed by the PhenoDigm algorithm. We found the number of phenotypic abnormalities in the mouse and the corresponding Mendelian disorder, the pleiotropy and severity of the disease, and the viability and zygosity status of the mouse knockout to be associated with the ability of mouse models to recapitulate the human disorder. An analysis of the IMPC impact on disease gene discovery through a publication-tracking system revealed that the resource has been implicated in at least 109 validated rare disease-gene associations over the last decade.
Assuntos
Modelos Animais de Doenças , Fenótipo , Especificidade da Espécie , Animais , Humanos , Biologia Computacional/métodos , Camundongos , Camundongos Knockout , AlgoritmosRESUMO
Essential genes are those whose function is required for cell proliferation and/or organism survival. A gene's intolerance to loss-of-function can be allocated within a spectrum, as opposed to being considered a binary feature, since this function might be essential at different stages of development, genetic backgrounds or other contexts. Existing resources that collect and characterise the essentiality status of genes are based on either proliferation assessment in human cell lines, embryonic and postnatal viability evaluation in different model organisms, and gene metrics such as intolerance to variation scores derived from human population sequencing studies. There are also several repositories available that document phenotypic annotations for rare disorders in humans such as the Online Mendelian Inheritance in Man (OMIM) and the Human Phenotype Ontology (HPO) knowledgebases. This raises the prospect of being able to use clinical data, including lethality as the most severe phenotypic manifestation, to further our characterisation of gene essentiality. Here we queried OMIM for terms related to lethality and classified all Mendelian genes into categories, according to the earliest age of death recorded for the associated disorders, from prenatal death to no reports of premature death. To showcase this curated catalogue of human essential genes, we developed the Lethal Phenotypes Portal (https://lethalphenotypes.research.its.qmul.ac.uk), where we also explore the relationships between these lethality categories, constraint metrics and viability in cell lines and mouse. Further analysis of the genes in these categories reveals differences in the mode of inheritance of the associated disorders, physiological systems affected and disease class. We highlight how the phenotypic similarity between genes in the same lethality category combined with gene family/group information can be used for novel disease gene discovery. Finally, we explore the overlaps and discrepancies between the lethal phenotypes observed in mouse and human and discuss potential explanations that include differences in transcriptional regulation, functional compensation and molecular disease mechanisms. We anticipate that this resource will aid clinicians in the diagnosis of early lethal conditions and assist researchers in investigating the properties that make these genes essential for human development.
RESUMO
The Global Alliance for Genomics and Health (GA4GH) Phenopacket Schema was released in 2022 and approved by ISO as a standard for sharing clinical and genomic information about an individual, including phenotypic descriptions, numerical measurements, genetic information, diagnoses, and treatments. A phenopacket can be used as an input file for software that supports phenotype-driven genomic diagnostics and for algorithms that facilitate patient classification and stratification for identifying new diseases and treatments. There has been a great need for a collection of phenopackets to test software pipelines and algorithms. Here, we present Phenopacket Store. Phenopacket Store v.0.1.19 includes 6,668 phenopackets representing 475 Mendelian and chromosomal diseases associated with 423 genes and 3,834 unique pathogenic alleles curated from 959 different publications. This represents the first large-scale collection of case-level, standardized phenotypic information derived from case reports in the literature with detailed descriptions of the clinical data and will be useful for many purposes, including the development and testing of software for prioritizing genes and diseases in diagnostic genomics, machine learning analysis of clinical phenotype data, patient stratification, and genotype-phenotype correlations. This corpus also provides best-practice examples for curating literature-derived data using the GA4GH Phenopacket Schema.
RESUMO
The Global Alliance for Genomics and Health (GA4GH) Phenopacket Schema was released in 2022 and approved by ISO as a standard for sharing clinical and genomic information about an individual, including phenotypic descriptions, numerical measurements, genetic information, diagnoses, and treatments. A phenopacket can be used as an input file for software that supports phenotype-driven genomic diagnostics and for algorithms that facilitate patient classification and stratification for identifying new diseases and treatments. There has been a great need for a collection of phenopackets to test software pipelines and algorithms. Here, we present phenopacket-store. Version 0.1.12 of phenopacket-store includes 4916 phenopackets representing 277 Mendelian and chromosomal diseases associated with 236 genes, and 2872 unique pathogenic alleles curated from 605 different publications. This represents the first large-scale collection of case-level, standardized phenotypic information derived from case reports in the literature with detailed descriptions of the clinical data and will be useful for many purposes, including the development and testing of software for prioritizing genes and diseases in diagnostic genomics, machine learning analysis of clinical phenotype data, patient stratification, and genotype-phenotype correlations. This corpus also provides best-practice examples for curating literature-derived data using the GA4GH Phenopacket Schema.
RESUMO
Spinocerebellar ataxia 36 has been recently described in Japanese families as a new type of spinocerebellar ataxia with motor neuron signs. It is caused by a GGCCTG repeat expansion in intron 1 of NOP56. Family interview and document research allowed us to reconstruct two extensive, multigenerational kindreds stemming from the same village (Costa da Morte in Galicia, Spain), in the 17th century. We found the presence of the spinocerebellar ataxia 36 mutation co-segregating with disease in these families in whom we had previously identified an ~0.8 Mb linkage region to chromosome 20 p. Subsequent screening revealed the NOP56 expansion in eight additional Galician ataxia kindreds. While normal alleles contain 5-14 hexanucleotide repeats, expanded alleles range from ~650 to 2500 repeats, within a shared haplotype. Further expansion of repeat size was frequent, especially upon paternal transmission, while instances of allele contraction were observed in maternal transmissions. We found a total of 63 individuals carrying the mutation, 44 of whom were confirmed to be clinically affected; over 400 people are at risk. We describe here the detailed clinical picture, consisting of a late-onset, slowly progressive cerebellar syndrome with variable eye movement abnormalities and sensorineural hearing loss. There were signs of denervation in the tongue, as well as mild pyramidal signs, but otherwise no signs of classical amyotrophic lateral sclerosis. Magnetic resonance imaging findings were consistent with the clinical course, showing atrophy of the cerebellar vermis in initial stages, later evolving to a pattern of olivo-ponto-cerebellar atrophy. We estimated the origin of the founder mutation in Galicia to have occurred ~1275 years ago. Out of 160 Galician families with spinocerebellar ataxia, 10 (6.3%) were found to have spinocerebellar ataxia 36, while 15 (9.4%) showed other of the routinely tested dominant spinocerebellar ataxia types. Spinocerebellar ataxia 36 is thus, so far, the most frequent dominant spinocerebellar ataxia in this region, which may have implications for American countries associated with traditional Spanish emigration.
Assuntos
Saúde da Família , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , Expansão das Repetições de Trinucleotídeos/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Cromossomos Humanos Par 20/genética , Análise Mutacional de DNA , Progressão da Doença , Feminino , Ligação Genética , Genótipo , Humanos , Íntrons/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Espanha/epidemiologia , Ataxias Espinocerebelares/patologiaRESUMO
Mouse models are relevant to studying the functionality of genes involved in human diseases; however, translation of phenotypes can be challenging. Here, we investigated genes related to monogenic forms of cardiovascular disease based on the Genomics England PanelApp and aligned them to International Mouse Phenotyping Consortium (IMPC) data. We found 153 genes associated with cardiomyopathy, cardiac arrhythmias or congenital heart disease in humans, of which 151 have one-to-one mouse orthologues. For 37.7% (57/151), viability and heart data captured by electrocardiography, transthoracic echocardiography, morphology and pathology from embryos and young adult mice are available. In knockout mice, 75.4% (43/57) of these genes showed non-viable phenotypes, whereas records of prenatal, neonatal or infant death in humans were found for 35.1% (20/57). Multisystem phenotypes are common, with 58.8% (20/34) of heterozygous (homozygous lethal) and 78.6% (11/14) of homozygous (viable) mice showing cardiovascular, metabolic/homeostasis, musculoskeletal, hematopoietic, nervous system and/or growth abnormalities mimicking the clinical manifestations observed in patients. These IMPC data are critical beyond cardiac diagnostics given their multisystemic nature, allowing detection of abnormalities across physiological systems and providing a valuable resource to understand pleiotropic effects.
Assuntos
Arritmias Cardíacas , Humanos , Animais , Camundongos , Camundongos Knockout , Fenótipo , Heterozigoto , HomozigotoRESUMO
The importance for research and clinical utility of mutation databases, as well as the issues and difficulties entailed in their construction, is discussed within the Human Variome Project. While general principles and standards can apply to most human diseases, some specific questions arise when dealing with the nature of genetic neurological disorders. So far, publically accessible mutation databases exist for only about half of the genes causing neurogenetic disorders; and a considerable work is clearly still needed to optimize their content. The current landscape, main challenges, some potential solutions, and future perspectives on genetic databases for disorders of the nervous system are reviewed in this special issue of Human Mutation on neurogenetics.
Assuntos
Bases de Dados Genéticas , Genoma Humano , Doenças do Sistema Nervoso/genética , Biologia Computacional/métodos , Estudos de Associação Genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Heterogeneidade Genética , Humanos , Armazenamento e Recuperação da Informação/métodos , MutaçãoRESUMO
BACKGROUND: Migraine is a prevalent neurological disorder with a complex genetic background characterized by recurrent episodes of headache. The disease is subclassified into migraine with aura (MA) and migraine without aura (MO). Many association studies have been performed to date to identify genetic risk variants for common migraine, most of them focusing on selected candidate genes, with variable and often inconsistent results. Recently, a clinic-based genome-wide association study for migraine reported a functionally relevant risk variant (SNP rs1835740), involved in glutamate homeostasis, which showed a significant association with MA. We aimed to replicate this finding in a clinic-based study of a Spanish cohort with MA and MO patients. METHODS: We genotyped SNP rs1835740 in a Spanish sample of 1521 patients and 1379 screened controls and performed a case-control association study. CONCLUSION: No association was found between the assayed SNP and any of the clinical groups considered.
Assuntos
Cromossomos Humanos Par 8/genética , Estudo de Associação Genômica Ampla , Enxaqueca com Aura/genética , Enxaqueca sem Aura/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Moléculas de Adesão Celular/genética , Criança , Pré-Escolar , Feminino , Frequência do Gene , Predisposição Genética para Doença , Ácido Glutâmico/metabolismo , Humanos , Masculino , Proteínas de Membrana , Pessoa de Meia-Idade , Enxaqueca com Aura/epidemiologia , Enxaqueca com Aura/etnologia , Enxaqueca sem Aura/epidemiologia , Enxaqueca sem Aura/etnologia , Proteínas de Ligação a RNA , Reprodutibilidade dos Testes , Risco , Espanha/epidemiologia , Adulto JovemRESUMO
BACKGROUND: The diagnostic rate of Mendelian disorders in sequencing studies continues to increase, along with the pace of novel disease gene discovery. However, variant interpretation in novel genes not currently associated with disease is particularly challenging and strategies combining gene functional evidence with approaches that evaluate the phenotypic similarities between patients and model organisms have proven successful. A full spectrum of intolerance to loss-of-function variation has been previously described, providing evidence that gene essentiality should not be considered as a simple and fixed binary property. METHODS: Here we further dissected this spectrum by assessing the embryonic stage at which homozygous loss-of-function results in lethality in mice from the International Mouse Phenotyping Consortium, classifying the set of lethal genes into one of three windows of lethality: early, mid, or late gestation lethal. We studied the correlation between these windows of lethality and various gene features including expression across development, paralogy and constraint metrics together with human disease phenotypes. We explored a gene similarity approach for novel gene discovery and investigated unsolved cases from the 100,000 Genomes Project. RESULTS: We found that genes in the early gestation lethal category have distinct characteristics and are enriched for genes linked with recessive forms of inherited metabolic disease. We identified several genes sharing multiple features with known biallelic forms of inborn errors of the metabolism and found signs of enrichment of biallelic predicted pathogenic variants among early gestation lethal genes in patients recruited under this disease category. We highlight two novel gene candidates with phenotypic overlap between the patients and the mouse knockouts. CONCLUSIONS: Information on the developmental period at which embryonic lethality occurs in the knockout mouse may be used for novel disease gene discovery that helps to prioritise variants in unsolved rare disease cases.
Assuntos
Embrião de Mamíferos , Genes Letais , Animais , Feminino , Homozigoto , Humanos , Camundongos , Camundongos Knockout , Fenótipo , GravidezRESUMO
SPTBN1 encodes ßII-spectrin, the ubiquitously expressed ß-spectrin that forms micrometer-scale networks associated with plasma membranes. Mice deficient in neuronal ßII-spectrin have defects in cortical organization, developmental delay and behavioral deficiencies. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous SPTBN1 variants may also show measurable compromise of neural development and function. Here we identify heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features. We show that these SPTBN1 variants lead to effects that affect ßII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics. Our studies define SPTBN1 variants as the genetic basis of a neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and underscore the critical role of ßII-spectrin in the central nervous system.
Assuntos
Genes Dominantes , Predisposição Genética para Doença , Variação Genética , Transtornos do Neurodesenvolvimento/genética , Espectrina/genética , Animais , Estudos de Associação Genética/métodos , Heterozigoto , Humanos , Camundongos , Transtornos do Neurodesenvolvimento/diagnóstico , Fenótipo , Espectrina/metabolismoRESUMO
The identification of causal variants in sequencing studies remains a considerable challenge that can be partially addressed by new gene-specific knowledge. Here, we integrate measures of how essential a gene is to supporting life, as inferred from viability and phenotyping screens performed on knockout mice by the International Mouse Phenotyping Consortium and essentiality screens carried out on human cell lines. We propose a cross-species gene classification across the Full Spectrum of Intolerance to Loss-of-function (FUSIL) and demonstrate that genes in five mutually exclusive FUSIL categories have differing biological properties. Most notably, Mendelian disease genes, particularly those associated with developmental disorders, are highly overrepresented among genes non-essential for cell survival but required for organism development. After screening developmental disorder cases from three independent disease sequencing consortia, we identify potentially pathogenic variants in genes not previously associated with rare diseases. We therefore propose FUSIL as an efficient approach for disease gene discovery.
Assuntos
Doença/genética , Estudos de Associação Genética/métodos , Animais , Genes Essenciais , Genômica , Humanos , Camundongos , Camundongos KnockoutRESUMO
INTRODUCTION: The pathophysiology of PD (Parkinson's disease) has been related to the ubiquitin proteasome system and oxidative stress. Parkin acts as ubiquitin ligase on several substrates. Because genetic variants often have different frequencies across populations, population specific analyses are necessary to complement and validate results from genome-wide association studies. METHODS: We carried out an association study with genes coding for parkin substrates and cellular stress components in the Galician population (Northern Spain). SNCA and MAPT SNPs were also analyzed. We studied 75 SNPs in a discovery sample of 268 PD patients and 265 controls from Galicia. A replication sample of 271 patients and 260 controls was recruited from Mexico City. RESULTS: We observed significant association between PD and SNPs in MAPT. Nominal p-values<0.05 were obtained in the Galician cohort for SNPs in SYT11, coding for synaptotagmin XI. These results were replicated in the Mexican sample. DISCUSSION: The associated markers lie within a ~140kb strong linkage disequilibrium segment that harbors several candidate genes, including SYT11. SNPs from the GBA-SYT11-RAB25 region have been previously associated with PD, however the functionally relevant variants remain unknown. Our data support a likely role of genetic factors within 1q22 in PD susceptibility.