Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 18(15): e2107027, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246940

RESUMO

An atomically thin TaSe2 sample, approximately containing two to three layers of TaSe2 nanosheets with a diameter of 2.5 cm is prepared here for the first time and applied on the detection of various Raman-active molecules. It achieves a limit of detection of 10-10  m for rhodamine 6G molecules. The excellent surface-enhanced Raman scattering (SERS) performance and underlying mechanism of TaSe2 are revealed using spectrum analysis and density functional theory. The large adsorption energy and the abundance of filled electrons close to the Fermi level are found to play important roles in the chemical enhancement mechanism. Moreover, the TaSe2 film enables highly sensitive detection of bilirubin in serum and urine samples, highlighting the potential of using 2D SERS substrates for applications in clinical diagnosis, for example, in the diagnosis of jaundice caused by excess bilirubin in newborn children.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Bilirrubina , Humanos , Recém-Nascido , Nanopartículas Metálicas/química , Prata/química
2.
ACS Nano ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941591

RESUMO

High-performance thermal interface materials (TIMs) are highly desired for high-power electronic devices to accelerate heat dissipation. However, the inherent trade-off conflict between achieving high thermal conductivity and excellent compliance of filler-enhanced TIMs results in the unsatisfactory interfacial heat transfer efficiency of existing TIM solutions. Here, we report the graphene fiber (GF)-based elastic TIM with metal-level thermal conductivity via mechanical-electric dual-field synergistic alignment engineering. Compared with state-of-the-art carbon fiber (CF), GF features both superb high thermal conductivity of ∼1200 W m-1 K-1 and outstanding flexibility. Under dual-field synergistic alignment regulation, GFs are vertically aligned with excellent orientation (0.88) and high array density (33.5 mg cm-2), forming continuous thermally conductive pathways. Even at a low filler content of ∼17 wt %, GF-based TIM demonstrates extraordinarily high through-plane thermal conductivity of up to 82.4 W m-1 K-1, exceeding most CF-based TIMs and even comparable to commonly used soft indium foil. Benefiting from the low stiffness of GF, GF-based TIM shows a lower compressive modulus down to 0.57 MPa, an excellent resilience rate of 95% after compressive cycles, and diminished contact thermal resistance as low as 7.4 K mm2 W-1. Our results provide a superb paradigm for the directed assembly of thermally conductive and flexible GFs to achieve scalable and high-performance TIMs, overcoming the long-standing bottleneck of mechanical-thermal mismatch in TIM design.

3.
Adv Mater ; 35(48): e2305615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821206

RESUMO

Multimaterial integration, such as soft elastic and stiff components, exhibits rich deformation and functional behaviors to meet complex needs. Integrating multimaterials in the level of individual fiber is poised to maximize the functional design capacity of smart wearable electronic textiles, but remains unfulfilled. Here, this work continuously integrates stiff and soft elastic components into single fiber to fabricate encoded mechano-metafiber by programmable microfluidic sequence spinning (MSS). The sequences with programmable modulus feature the controllable localization of strain along metafiber length. The mechano-metafibers feature two essential nonlinear deformation modes, which are local strain amplification and retardation. This work extends the sequence-encoded metafiber into fiber networks to exhibit greatly enhanced strain amplification and retardation capability in cascades. Local strain engineering enables the design of highly sensitive strain sensors, stretchable fiber devices to protect brittle components and the fabrication of high-voltage supercapacitors as well as axial electroluminescent arrays. The approach allows the scalably design of multimaterial metafibers with programmable localized mechanical properties for woven metamaterials, smart textiles, and wearable electronics.

4.
Mater Horiz ; 10(2): 556-565, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36458453

RESUMO

A layered architecture endows structural materials like nacre and biomimetic ceramics with enhanced mechanical performance because it introduces multiple strengthening and toughening mechanisms. Yet present studies predominantly involve enhancing the alignment in planar lamellar structures, and the effects of the stacking curvature have largely remained unexplored. Here we find that ordered curved stacking bands in lamellar structures act as a new structural mechanism to simultaneously improve strength and toughness. Aligned curved bands increase interlayer frictional resistance to show a strengthening effect and suppress the crack propagation to show an extrinsic toughening effect. In prototypical graphene oxide films, rational regulation of the intervals and orientations of curved bands bring a maximum 162% improvement in strength and 183% improvement in toughness simultaneously. Our results reveal the hidden effects of the stacking curvature on the mechanical behaviors of lamellar materials, opening an extra design dimension to fabricate stronger and tougher structural materials.

5.
Biosens Bioelectron ; 218: 114773, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228393

RESUMO

In-situ real-time detection of drug metabolites and biomolecules in hospitalized patients' urine helps the doctors to monitor their physiological indicators and regulate the use of drug doses. In this work, nitrogen-doped carbon-supported bimetal was prepared into the screen-printed electrodes (SPEs) and applied for real-time monitoring of acetaminophen (AC) and dopamine (DA) in urine. Via one-step pyrolysis of the core-shell cubic precursor (Cu3[Co(CN)6]2@Co3[Co(CN)6]2, CuCo@CoCo), the nitrogen-doped carbon-supported bimetal (CuCo-NC) was formed. The bimetal composites presented twice higher catalytic activity than the counterparts with single metal. In addition, the nanocomposites exhibited strong conductivity after pyrolysis, promoting electron transport efficiency as indicated by impedance measurements. Accordingly, the CuCo-NC based sensor offered excellent sensitivity with the detection limits down to 50 nM and 30 nM at the detection range of 0.1-400 µM and 0.2-200 µM for detection of AC and DA, respectively. Finally, in combination with a miniaturized electrochemical device, the sensor was applied for in-situ real-time monitoring of AC and DA in the urinary bag for up to 12h. As compared with other techniques such as high-performance liquid chromatography, UV-spectrophotometry and fluorescence spectrometer, the biosensor demonstrated the advantages of real-time monitoring, easy operation and excellent portability. However, the multi-component detection and self-calibration function need to be further developed. This method paves a way for the continuous monitoring of drug metabolites and biomolecules of hospitalized patients.


Assuntos
Técnicas Biossensoriais , Dopamina , Humanos , Dopamina/análise , Carbono/química , Nitrogênio/química , Acetaminofen/análise , Técnicas Biossensoriais/métodos , Limite de Detecção
6.
Adv Mater ; 33(13): e2007470, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33634517

RESUMO

Aqueous rechargeable batteries are highly safe, low-cost, and environmentally friendly, but restricted by low energy density. One of the most efficient solutions is to improve the concentration of the aqueous electrolytes. However, each salt is limited by its physical solubility, generally below 21-32 mol kg-1 (m). Here, a ZnCl2 /ZnBr2 /Zn(OAc)2 aqueous electrolyte with a record super-solubility up to 75 m is reported, which breaks through the physical solubility limit. This is attributed to the formation of acetate-capped water-salt oligomers bridged by Br- /Cl- -H and Br- /Cl- /O-Zn2+ interactions. Mass spectrometry indicates that acetate anions containing nonpolarized protons prohibit the overgrowth and precipitation of ionic oligomers. The polymer-like glass transition temperature of such inorganic electrolytes is found at ≈-70 to -60 °C, without the observation of peaks for salt-crystallization and water-freezing from 40 to -80 °C. This supersoluble electrolyte enables high-performance aqueous dual-ion batteries that exhibit a reversible capacity of 605.7 mAh g-1 , corresponding to an energy density of 908.5 Wh kg-1 , with a coulombic efficiency of 98.07%. In situ X-ray diffraction and Raman technologies reveal that such high ionic concentrations of the supersoluble electrolyte enable a stage-1 intercalation of bromine into macroscopically assembled graphene cathode.

7.
Nanoscale ; 12(22): 11971-11978, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32458941

RESUMO

Carbon materials are widely used in numerous fields, thus changing our lives. With the increasing consumption of carbon-based products, the disposal of consequent wastes has become a challenge due to their inert nature, which is hard to degrade, burn, or melt. Here, a recyclable strategy is proposed to deal with the explosive growth of carbon wastes. Through a fast and clean electrochemical method, carbon wastes are converted into functional building blocks of high value, such as graphene and graphene quantum dots (GQDs). For typical polyimide-pyrolyzed carbon (PPC), we establish the relationship between the chemical structure of raw materials and the characteristics of graphene products, including size and yield. The size-tunable graphene ranging from 3 nm to tens of micrometers is prepared by tuning the sp3/sp2 carbon ratio of PPC from 0.5 to 0 at adjustable temperatures (800 °C-2800 °C). Significantly, PPC with a bicontinuous structure (comprising sp2 and sp3) was efficiently cut into GQDs in 2 h with a high yield of 98%. Our protocol offers great potential for the scale-up preparations and applications of GQDs. Besides, we demonstrate that the GQDs performed well as dispersants to disperse hydrophobic carbon nanotubes (0.6 mg mL-1) in water and improved the gravimetric capacitance of graphene-based supercapacitors by 79.4% with 3% GQDs added as nano-fillers.

8.
J Phys Chem Lett ; 11(1): 303-310, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31834802

RESUMO

Aqueous electrolytes, which possess the advantages of nonflammability and high ionic conductivity for safe and sustainable energy storage systems, are restricted by their narrow potential windows due to water electrolysis. The recent study of high-voltage aqueous electrolytes has mainly focused on the molecular-level hydration structure of electrolyte salts, while the influence from subatomic-scale neutrons of the water solvent has never been considered. Here, for the first time, we report an electrochemical isotope effect in which the numerically increased neutrons in the water solvent extend the potential window of aqueous electrolytes. This effect is caused by the following factors: the lower zero-point energy of the deuterium compound, the smaller ion product, and the larger dehydration energy of heavy water. It is affected by ion species, electrolyte concentrations, and the ratio of deuterium to protium. Our finding provides the new insight into aqueous electrochemistry that the isotope in molecular water improves the performance of aqueous electrolytes.

9.
Sci Adv ; 3(12): eaao7233, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29255803

RESUMO

Rechargeable aluminum-ion batteries are promising in high-power density but still face critical challenges of limited lifetime, rate capability, and cathodic capacity. We design a "trihigh tricontinuous" (3H3C) graphene film cathode with features of high quality, orientation, and channeling for local structures (3H) and continuous electron-conducting matrix, ion-diffusion highway, and electroactive mass for the whole electrode (3C). Such a cathode retains high specific capacity of around 120 mAh g-1 at ultrahigh current density of 400 A g-1 (charged in 1.1 s) with 91.7% retention after 250,000 cycles, surpassing all the previous batteries in terms of rate capability and cycle life. The assembled aluminum-graphene battery works well within a wide temperature range of -40 to 120°C with remarkable flexibility bearing 10,000 times of folding, promising for all-climate wearable energy devices. This design opens an avenue for a future super-batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA