RESUMO
BACKGROUND: Over 120 million mice and rats are used annually in research, conventionally housed in shoebox-sized cages that restrict natural behaviours (e.g. nesting and burrowing). This can reduce physical fitness, impair thermoregulation and reduce welfare (e.g. inducing abnormal stereotypic behaviours). In humans, chronic stress has biological costs, increasing disease risks and potentially shortening life. Using a pre-registered protocol ( https://atrium.lib.uoguelph.ca/xmlui/handle/10214/17955 ), this meta-analysis therefore tested the hypothesis that, compared to rodents in 'enriched' housing that better meets their needs, conventional housing increases stress-related morbidity and all-cause mortality. RESULTS: Comprehensive searches (via Ovid, CABI, Web of Science, Proquest and SCOPUS on May 24 2020) yielded 10,094 publications. Screening for inclusion criteria (published in English, using mice or rats and providing 'enrichments' in long-term housing) yielded 214 studies (within 165 articles, using 6495 animals: 59.1% mice; 68.2% male; 31.8% isolation-housed), and data on all-cause mortality plus five experimentally induced stress-sensitive diseases: anxiety, cancer, cardiovascular disease, depression and stroke. The Systematic Review Center for Laboratory animal Experimentation (SYRCLE) tool assessed individual studies' risks of bias. Random-effects meta-analyses supported the hypothesis: conventional housing significantly exacerbated disease severity with medium to large effect sizes: cancer (SMD = 0.71, 95% CI = 0.54-0.88); cardiovascular disease (SMD = 0.72, 95% CI = 0.35-1.09); stroke (SMD = 0.87, 95% CI = 0.59-1.15); signs of anxiety (SMD = 0.91, 95% CI = 0.56-1.25); signs of depression (SMD = 1.24, 95% CI = 0.98-1.49). It also increased mortality rates (hazard ratio = 1.48, 95% CI = 1.25-1.74; relative median survival = 0.91, 95% CI = 0.89-0.94). Meta-regressions indicated that such housing effects were ubiquitous across species and sexes, but could not identify the most impactful improvements to conventional housing. Data variability (assessed via coefficient of variation) was also not increased by 'enriched' housing. CONCLUSIONS: Conventional housing appears sufficiently distressing to compromise rodent health, raising ethical concerns. Results also add to previous work to show that research rodents are typically CRAMPED (cold, rotund, abnormal, male-biased, poorly surviving, enclosed and distressed), raising questions about the validity and generalisability of the data they generate. This research was funded by NSERC, Canada.
Assuntos
Doenças Cardiovasculares , Neoplasias , Acidente Vascular Cerebral , Animais , Feminino , Habitação , Masculino , Camundongos , Morbidade , Ratos , RoedoresRESUMO
Antibiotic use during pregnancy may increase the risk for asthma in children. We performed a meta-analysis assessing prenatal antibiotic exposure and the risk for childhood wheeze or asthma, as well as for diseases associated with the atopic march. A systematic literature search protocol (PROSPERO-ID: CRD42020191940) was registered and searches were completed using Medline, Proquest, Embase, and the Cochrane central register of controlled trials. Screening for inclusion criteria: published in English, German, French, Dutch, or Arabic, intervention (use of any antibiotic at any time point during pregnancy), and disease (reporting atopic disease incidence in children with a primary outcome of asthma or wheeze), and exclusion criteria: reviews, preclinical data, and descriptive studies, yielded 27 studies. Study quality was assessed using the Newcastle-Ottawa Assessment Scale. Quality of the evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. Our meta-analysis demonstrates that antibiotic use during pregnancy is associated with an increased relative risk (RR) of developing wheeze RR 1.51 (95% CI: 1.17-1.94) or asthma RR 1.28 (95% CI 1.22-1.34) during childhood. Assessment of the atopic march in association with asthma or wheeze revealed that antibiotic use during pregnancy also increases the risk for eczema/dermatitis RR 1.28 (95% CI: 1.06-1.53) and allergic rhinitis RR 1.13 (95% CI: 1.02-1.25). One study found an increase in food allergy RR 1.81 (95% CI: 1.11-2.95). Maternal antibiotic use during pregnancy is associated with an increased risk for wheeze or asthma development in children, as well as for diseases involved in the atopic march. There was high heterogeneity in the data, and the certainty of the evidence was determined to be low quality, highlighting the need for more high-quality studies on this topic. These results have importance for antibiotic stewardship throughout the prenatal period. This work was supported by the Deutsche Forschungsgemeinschaft and the Konrad Adenauer Foundation.
Assuntos
Asma , Hipersensibilidade Alimentar , Hipersensibilidade Imediata , Criança , Gravidez , Feminino , Humanos , Antibacterianos/efeitos adversos , Asma/epidemiologia , Asma/etiologia , Asma/tratamento farmacológico , Hipersensibilidade Imediata/epidemiologia , Hipersensibilidade Imediata/etiologia , Hipersensibilidade Alimentar/prevenção & controle , Sons Respiratórios/etiologiaRESUMO
Podocalyxin (Podxl) is broadly expressed on the luminal face of most blood vessels in adult vertebrates, yet its function on these cells is poorly defined. In the present study, we identified specific functions for Podxl in maintaining endothelial barrier function. Using electrical cell substrate impedance sensing and live imaging, we found that, in the absence of Podxl, human umbilical vein endothelial cells fail to form an efficient barrier when plated on several extracellular matrix substrates. In addition, these monolayers lack adherens junctions and focal adhesions and display a disorganized cortical actin cytoskeleton. Thus, Podxl has a key role in promoting the appropriate endothelial morphogenesis required to form functional barriers. This conclusion is further supported by analyses of mutant mice in which we conditionally deleted a floxed allele of Podxl in vascular endothelial cells (vECs) using Tie2Cre mice (PodxlΔTie2Cre). Although we did not detect substantially altered permeability in naïve mice, systemic priming with lipopolysaccharide (LPS) selectively disrupted the blood-brain barrier (BBB) in PodxlΔTie2Cre mice. To study the potential consequence of this BBB breach, we used a selective agonist (TFLLR-NH2) of the protease-activated receptor-1 (PAR-1), a thrombin receptor expressed by vECs, neuronal cells, and glial cells. In response to systemic administration of TFLLR-NH2, LPS-primed PodxlΔTie2Cre mice become completely immobilized for a 5-min period, coinciding with severely dampened neuroelectric activity. We conclude that Podxl expression by CNS tissue vECs is essential for BBB maintenance under inflammatory conditions.
Assuntos
Barreira Hematoencefálica , Inflamação/metabolismo , Sialoglicoproteínas/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , MorfogêneseRESUMO
BACKGROUND: The type 2 cytokines IL-4 and IL-13 promote not only atopic dermatitis (AD) but also the resolution of inflammation. How type 2 cytokines participate in the resolution of AD is poorly known. OBJECTIVE: Our aim was to determine the mechanisms and cell types governing skin inflammation, barrier dysfunction, and resolution of inflammation in a model of AD. METHODS: Mice that exhibit expression of IL-4, IL-13, and MCPT8 or that could be depleted of basophils or eosinophils, be deficient in IL-4 or MHC class II molecules, or have basophils lacking macrophage colony-stimulating factor (M-CSF) were treated with calcipotriol (MC903) as an acute model of AD. Kinetics of the disease; keratinocyte differentiation; and leukocyte accumulation, phenotype, function, and cytokine production were measured by transepidermal water loss, histopathology, molecular biology, or unbiased analysis of spectral flow cytometry. RESULTS: In this model of AD, basophils were activated systemically and were the initial and main source of IL-4 in the skin. Basophils and IL-4 promoted epidermal hyperplasia and skin barrier dysfunction by acting on keratinocyte differentiation during inflammation. Basophils, IL-4, and basophil-derived M-CSF inhibited the accumulation of proinflammatory cells in the skin while promoting the expansion and function of proresolution M2-like macrophages and the expression of probarrier genes. Basophils kept their proresolution properties during AD resolution. CONCLUSION: Basophils can display both beneficial and detrimental type 2 functions simultaneously during atopic inflammation.
Assuntos
Basófilos/imunologia , Dermatite Atópica/imunologia , Pele/imunologia , Animais , Calcitriol/análogos & derivados , Diferenciação Celular , Citocinas/genética , Citocinas/imunologia , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/genética , Dermatite Atópica/patologia , Toxina Diftérica , Edema/induzido quimicamente , Edema/imunologia , Eosinófilos/imunologia , Feminino , Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Hiperplasia/imunologia , Queratinócitos/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pele/patologiaRESUMO
BACKGROUND: Mucosal-associated invariant T (MAIT) cells are unconventional T cells which recognize microbial metabolites presented by the major histocompatibility complex class I-related molecule MR1. Although MAIT cells have been shown to reside in human and murine skin, their contribution to atopic dermatitis (AD), an inflammatory skin disease associated with barrier dysfunction and microbial translocation, has not yet been determined. METHODS: Genetic deletion of MR1 and topical treatment with inhibitory MR1 ligands, which result in the absence and functional inhibition of MAIT cells, respectively, were used to investigate the role of MR1-dependent immune surveillance in a MC903-driven murine model of AD. RESULTS: The absence or inhibition of MR1 arrested AD disease progression through the blockade of both eosinophil activation and recruitment of IL-4- and IL-13-producing cells. In addition, the therapeutic efficacy of phototherapy against MC903-driven AD could be increased with prior application of folate, which photodegrades into the inhibitory MR1 ligand 6-formylpterin. CONCLUSION: We identified MAIT cells as sentinels and mediators of cutaneous type 2 immunity. Their pathogenic activity can be inhibited by topical application or endogenous generation, via phototherapy, of inhibitory MR1 ligands.
Assuntos
Dermatite Atópica , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor , Células T Invariantes Associadas à Mucosa , Terapia Ultravioleta , Animais , Dermatite Atópica/terapia , Modelos Animais de Doenças , CamundongosRESUMO
The cytokine IL-22 is rapidly induced at barrier surfaces where it regulates host-protective antimicrobial immunity and tissue repair but can also enhance disease severity in some chronic inflammatory settings. Using the chronic Salmonella gastroenteritis model, Ab-mediated neutralization of IL-22 impaired intestinal epithelial barrier integrity and, consequently, exaggerated expression of proinflammatory cytokines. As disease normally resolved, neutralization of IL-22 caused luminal narrowing of the cecum-a feature reminiscent of fibrotic strictures seen in Crohn disease patients. Corresponding to the exaggerated immunopathology caused by IL-22 suppression, Salmonella burdens in the gut were reduced. This enhanced inflammation and pathogen clearance was associated with alterations in gut microbiome composition, including the overgrowth of Bacteroides acidifaciens Our findings thus indicate that IL-22 plays a protective role by limiting infection-induced gut immunopathology but can also lead to persistent pathogen colonization.
Assuntos
Gastroenterite/imunologia , Microbioma Gastrointestinal , Interleucinas/imunologia , Salmonelose Animal/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Neutralizantes/imunologia , Bacteroides , Ceco/imunologia , Ceco/patologia , Doença de Crohn/imunologia , Doença de Crohn/patologia , Citocinas/imunologia , Gastroenterite/microbiologia , Inflamação , Interleucinas/antagonistas & inibidores , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Indução de Remissão , Salmonelose Animal/terapia , Salmonella typhimurium , Interleucina 22RESUMO
BACKGROUND: The use of antibiotics during pregnancy is associated with increased allergic asthma risk in the offspring, and given that approximately 25% of pregnant women are prescribed antibiotics, it is important to understand the mechanisms contributing to this phenomenon. Currently, there are no studies that directly test this association experimentally. Our objective was to develop a mouse model in which antibiotic treatment during pregnancy results in increased offspring asthma susceptibility. METHODS: Pregnant mice were treated daily from gestation day 8-17 with an oral solution of the antibiotic vancomycin, and three concentrations were tested. At weaning, offspring were subjected to an adjuvant-free experimental asthma protocol using ovalbumin as an allergen. The composition of the gut microbiome was determined in mothers and offspring with samples collected from five different time points; short-chain fatty acids were also analyzed in allergic offspring. RESULTS: We found that maternal antibiotic treatment during pregnancy was associated with increased offspring asthma severity in a dose-dependent manner. Furthermore, maternal vancomycin treatment during pregnancy caused marked changes in the gut microbiome composition in both mothers and pups at several different time points. The increased asthma severity and intestinal microbiome changes in pups were also associated with significantly decreased cecal short-chain fatty acid concentrations. CONCLUSION: Consistent with the "Developmental Origins Hypothesis," our results confirm that exposure to antibiotics during pregnancy shapes the neonatal intestinal environment and increases offspring allergic lung inflammation.
Assuntos
Asma , Hipersensibilidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Antibacterianos/efeitos adversos , Asma/tratamento farmacológico , Asma/etiologia , Feminino , Humanos , Camundongos , Ovalbumina , GravidezRESUMO
BACKGROUND: Allergic disease is the most frequent chronic health issue in children and has been linked to early-life gut microbiome dysbiosis. Many lines of evidence suggest that microbially derived short-chain fatty acids, and particularly butyrate, can promote immune tolerance. OBJECTIVE: We sought to determine whether bacterial butyrate production in the gut during early infancy is protective against the development of atopic disease in children. METHODS: We used shotgun metagenomic analysis to determine whether dysbiosis in butyrate fermentation could be identified in human infants, before their developing allergic disease. RESULTS: We found that the microbiome of infants who went on to develop allergic sensitization later in childhood lacked genes encoding key enzymes for carbohydrate breakdown and butyrate production. CONCLUSIONS: Our findings support the importance of microbial carbohydrate metabolism during early infancy in protecting against the development of allergies.
Assuntos
Bactérias , Ácido Butírico , Disbiose , Microbioma Gastrointestinal , Hipersensibilidade , Bactérias/classificação , Bactérias/genética , Bactérias/imunologia , Bactérias/metabolismo , Ácido Butírico/imunologia , Ácido Butírico/metabolismo , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/imunologia , Pré-Escolar , Disbiose/genética , Disbiose/imunologia , Disbiose/metabolismo , Disbiose/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Humanos , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Hipersensibilidade/prevenção & controle , Lactente , Estudos Longitudinais , Masculino , Metagenoma , Estudos ProspectivosAssuntos
Células T Invariantes Associadas à Mucosa , Animais , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Camundongos , Humanos , Especificidade de Órgãos/imunologia , Inflamação/imunologia , Hipersensibilidade Respiratória/imunologiaRESUMO
Infecting humans with controlled doses of helminths, such as human hookworm (termed hookworm therapy), is proposed to prevent or treat various intestinal and extraintestinal diseases. However, full-scale clinical trials examining hookworm therapy are limited by the inability to scale-up the production of hookworm larvae to infect sufficient numbers of patients. With the aim of overcoming this challenge, this study infected four healthy individuals with hookworm larvae that had been reanimated from cryopreserved eggs to examine their viability and immunogenicity. We demonstrate that reanimated cryopreserved hookworm larvae establish a viable hookworm infection and elicit a similar immune response to larvae cultured from fresh stool. Furthermore, a refined understanding of the therapeutic mechanisms of hookworm is imperative to determine which diseases to target with hookworm therapy. To investigate potential therapeutic mechanisms, this study assessed changes in the immune cells, microbiome, and plasma metabolome in the four healthy individuals infected with cryopreserved hookworm larvae and another nine individuals infected with larvae cultured from freshly obtained stool. We identified potential immunoregulatory mechanisms by which hookworm may provide a beneficial effect on its host, including increased expression of CTLA-4 on regulatory T cells (Tregs) and upregulation of tryptophan metabolism. Furthermore, we found that a participant's baseline microbiome predicted the severity of symptoms and intestinal inflammation experienced during a controlled hookworm infection. In summary, our findings demonstrate the feasibility of full-scale clinical trials examining hookworm therapy by minimizing the reliance on human donors and optimizing the culturing process, thereby enabling viable hookworm larvae to be mass-produced and enabling on-demand inoculation of patients. Furthermore, this study provides insights into the complex interactions between helminths and their host, which could inform the development of novel therapeutic strategies.
Assuntos
Antígeno CTLA-4 , Criopreservação , Infecções por Uncinaria , Larva , Linfócitos T Reguladores , Triptofano , Humanos , Linfócitos T Reguladores/imunologia , Triptofano/metabolismo , Animais , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/genética , Infecções por Uncinaria/imunologia , Infecções por Uncinaria/parasitologia , Larva/imunologia , Regulação para Cima , Adulto , Feminino , Fezes/parasitologia , Fezes/microbiologia , Ancylostomatoidea/imunologia , MasculinoRESUMO
Diets high in fruit and vegetables are perceived to be beneficial for intestinal homeostasis, in health as well as in the context of inflammatory bowel diseases (IBDs). Recent breakthroughs in the field of immunology have highlighted the importance of the ligand-activated transcription factor aryl hydrocarbon receptor (AhR) as a critical regulator of mucosal immunity, including the intestinal trafficking of CD4+ helper T cells, an immune cell subset implicated in a wide range of homeostatic and pathogenic processes. Specifically, the AhR has been shown to directly regulate the expression of the chemoattractant receptor G Protein-Coupled Receptor 15 (GPR15) on CD4+ T cells. GPR15 is an important gut homing marker whose expression on CD4+ T cells in the peripheral circulation is elevated in patients suffering from ulcerative colitis, raising the possibility that, in this setting, the beneficial effect of a diet rich in fruits and vegetables may be mediated through the modulation of GPR15 expression. To address this, we screened physiologically-relevant polyphenol and glucosinolate metabolites for their ability to affect both AhR activity and GPR15 expression. Our complementary approach and associated findings suggest that polyphenol and glucosinolate metabolites can regulate GPR15 expression on human CD4+ T cells in an AhR-dependent manner.
Assuntos
Linfócitos T CD4-Positivos , Colite Ulcerativa , Humanos , Linfócitos T CD4-Positivos/metabolismo , Glucosinolatos/farmacologia , Receptores de Hidrocarboneto Arílico , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de PeptídeosRESUMO
BACKGROUND: Human hookworm has been proposed as a treatment for ulcerative colitis (UC). This pilot study assessed the feasibility of a full-scale randomized control trial examining hookworm to maintain clinical remission in patients with UC. METHODS: Twenty patients with UC in disease remission (Simple Clinical Colitis Activity Index [SCCAI] ≤4 and fecal calprotectin (fCal) <100 ug/g) and only on 5-aminosalicylate received 30 hookworm larvae or placebo. Participants stopped 5-aminosalicylate after 12 weeks. Participants were monitored for up to 52 weeks and exited the study if they had a UC flare (SCCAI ≥5 and fCal ≥200 µg/g). The primary outcome was difference in rates of clinical remission at week 52. Differences were assessed for quality of life (QoL) and feasibility aspects including recruitment, safety, effectiveness of blinding, and viability of the hookworm infection. RESULTS: At 52 weeks, 4 of 10 (40%) participants in the hookworm group and 5 of 10 (50%) participants in the placebo group had maintained clinical remission (odds ratio, 0.67; 95% CI, 0.11-3.92). Median time to flare in the hookworm group was 231 days (interquartile range [IQR], 98-365) and 259 days for placebo (IQR, 132-365). Blinding was quite successful in the placebo group (Bang's blinding index 0.22; 95% CI, -0.21 to 1) but less successful in the hookworm group (0.70; 95% CI, 0.37-1.0). Almost all participants in the hookworm group had detectable eggs in their faeces (90%; 95% CI, 0.60-0.98), and all participants in this group developed eosinophilia (peak eosinophilia 4.35â ×â 10^9/L; IQR, 2.80-6.68). Adverse events experienced were generally mild, and there was no significant difference in QoL. CONCLUSIONS: A full-scale randomized control trial examining hookworm therapy as a maintenance treatment in patients with UC appears feasible.
This pilot study has shown a full-scale RCT examining hookworm therapy as maintenance therapy in patients with ulcerative colitis is feasible, safe, and will be well-tolerated.
RESUMO
The fortification of flour with folic acid for the prevention of neural tube defects (NTD) is currently mandated in over eighty countries worldwide, hence compelling its consumption by the greater part of the world's population. Notwithstanding its beneficial impact on rates of NTD, pervasive folic acid supplementation has invariably led to additive daily intakes reaching well beyond their original target, resulting in the circulation of unmetabolized folic acid. Associated idiopathic side-effects ranging from allergies to cancer have been suggested, albeit inconclusively. Herein, we hypothesize that their inconsistent detection and elusive etiology are linked to the in vivo generation of the immunosuppressive folic acid metabolite 6-formylpterin, which interferes with the still emerging and varied functions of Major Histocompatibility Complex-related molecule 1 (MR1)-restricted T cells. Accordingly, we predict that fortification-related adverse health outcomes can be eliminated by substituting folic acid with the bioequivalent folate vitamer 5-methyltetrahydrofolate, which does not break down into 6-formylpterin.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Defeitos do Tubo Neural , Farinha , Ácido Fólico/efeitos adversos , Alimentos Fortificados/efeitos adversos , Antígenos de Histocompatibilidade Classe I , Humanos , Antígenos de Histocompatibilidade Menor , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/epidemiologia , Defeitos do Tubo Neural/prevenção & controleRESUMO
Allergic disease is on the rise and yet the underlying cause and risk factors are not fully understood. While lifesaving in many circumstances, the use of antibiotics and the subsequent disruption of the microbiome are positively correlated with the development of allergies. Here, we describe the use of the antibiotic vancomycin in combination with the papain-induced mouse model of allergic disease that allows for the assessment of microbiome perturbations and the impact on allergy development.
Assuntos
Antibacterianos/farmacologia , Asma/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Coloração e Rotulagem/métodos , Vancomicina/farmacologia , Animais , Animais Recém-Nascidos , Asma/induzido quimicamente , Asma/genética , Asma/microbiologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/patologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/microbiologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Modelos Animais de Doenças , Amarelo de Eosina-(YS)/química , Feminino , Hematoxilina/química , Humanos , Imunoglobulina E/genética , Imunoglobulina E/imunologia , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-5/genética , Interleucina-5/imunologia , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Papaína/administração & dosagem , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologiaRESUMO
The ligand-activated aryl hydrocarbon receptor (AhR) is an important molecular regulator of immune function, whose activity can be modulated by dietary glucosinolate- and tryptophan-derived metabolites. In contrast, the potential use of polyphenols as dietary regulators of AhR-dependent immunity remains unclear. In this perspective, we discuss how cellular metabolism may alter the net effect of polyphenols on AhR, thus potentially reconciling some of the conflicting observations reported in the literature. We further provide a methodological roadmap, across the fields of immunology, metabolomics, and gut microbial ecology, to explore the potential effects of polyphenol-rich diets on AhR-regulated immune function in humans.
Assuntos
Imunidade , Polifenóis , Receptores de Hidrocarboneto Arílico , Humanos , Ligantes , Polifenóis/farmacologia , Receptores de Hidrocarboneto Arílico/genética , TriptofanoRESUMO
The microbiome plays a fundamental role in how the immune system develops and how inflammatory responses are shaped and regulated. The "gut-lung axis" is a relatively new term that highlights a crucial biological crosstalk between the intestinal microbiome and lung. A growing body of literature suggests that dysbiosis, perturbation of the gut microbiome, is a driving force behind the development, and severity of allergic asthma. Animal models have given researchers new insights into how gut microbe-derived components and metabolites, such as short-chain fatty acids (SCFAs), influence the development of asthma. While the full understanding of how SCFAs influence allergic airway disease remains obscure, a recurring theme of epigenetic regulation of gene expression in several immune cell compartments is emerging. This review will address our current understanding of how SCFAs, and specifically butyrate, orchestrates cell behavior, and epigenetic changes and will provide a detailed overview of the effects of these modifications on immune cells in the context of allergic airway disease.
Assuntos
Asma/metabolismo , Bactérias/metabolismo , Butiratos/metabolismo , Eosinófilos/metabolismo , Microbioma Gastrointestinal , Pulmão/metabolismo , Linfócitos/metabolismo , Mastócitos/metabolismo , Animais , Asma/imunologia , Asma/microbiologia , Asma/fisiopatologia , Disbiose , Eosinófilos/imunologia , Humanos , Pulmão/imunologia , Pulmão/fisiopatologia , Linfócitos/imunologia , Mastócitos/imunologia , Fenótipo , Transdução de SinaisRESUMO
Influenza vaccination is an effective public health measure to reduce the risk of influenza illness, particularly when the vaccine is well matched to circulating strains. Notwithstanding, the efficacy of influenza vaccination varies greatly among vaccinees due to largely unknown immunological determinants, thereby dampening population-wide protection. Here, we report that dietary fibre may play a significant role in humoral vaccine responses. We found dietary fibre intake and the abundance of fibre-fermenting intestinal bacteria to be positively correlated with humoral influenza vaccine-specific immune responses in human vaccinees, albeit without reaching statistical significance. Importantly, this correlation was largely driven by first-time vaccinees; prior influenza vaccination negatively correlated with vaccine immunogenicity. In support of these observations, dietary fibre consumption significantly enhanced humoral influenza vaccine responses in mice, where the effect was mechanistically linked to short-chain fatty acids, the bacterial fermentation product of dietary fibre. Overall, these findings may bear significant importance for emerging infectious agents, such as COVID-19, and associated de novo vaccinations.
Assuntos
Fibras na Dieta/farmacologia , Imunidade Humoral/efeitos dos fármacos , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Adolescente , Adulto , Animais , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Feminino , Fermentação , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Humanos , Imunogenicidade da Vacina , Influenza Humana/microbiologia , Influenza Humana/prevenção & controle , Masculino , Camundongos , Pessoa de Meia-Idade , Orthomyxoviridae/imunologia , Estações do Ano , Vacinação , Adulto JovemRESUMO
The development of cell therapy for repairing damaged or diseased skeletal muscle has been hindered by the inability to significantly expand immature, transplantable myogenic stem cells (MuSCs) in culture. To overcome this limitation, a deeper understanding of the mechanisms regulating the transition between activated, proliferating MuSCs and differentiation-primed, poorly engrafting progenitors is needed. Here, we show that methyltransferase Setd7 facilitates such transition by regulating the nuclear accumulation of ß-catenin in proliferating MuSCs. Genetic or pharmacological inhibition of Setd7 promotes in vitro expansion of MuSCs and increases the yield of primary myogenic cell cultures. Upon transplantation, both mouse and human MuSCs expanded with a Setd7 small-molecule inhibitor are better able to repopulate the satellite cell niche, and treated mouse MuSCs show enhanced therapeutic potential in preclinical models of muscular dystrophy. Thus, Setd7 inhibition may help bypass a key obstacle in the translation of cell therapy for muscle disease.