Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioessays ; 43(9): e2000307, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34260745

RESUMO

Recent research has pointed to the importance of the prenatal environment in the etiology of autism spectrum disorder (ASD) but the biological mechanisms which mitigate these environmental factors are not clear. Mitochondrial metabolism abnormalities, inflammation and oxidative stress as common physiological disturbances associated with ASD. Network analysis of the scientific literature identified several leading prenatal environmental factors associated with ASD, particularly air pollution, pesticides, the microbiome and epigenetics. These leading prenatal environmental factors were found to be most associated with inflammation, followed by oxidative stress and mitochondrial dysfunction. Other prenatal factors associated with ASD not identified by the network analysis were also found to be significantly associated with these common physiological disturbances. A better understanding of the biological mechanism which mediate the effect of prenatal environmental factors can lead to insights of how ASD develops and the development of targeted therapeutics to prevent ASD from occuring.


Assuntos
Poluição do Ar , Transtorno do Espectro Autista , Transtorno do Espectro Autista/genética , Epigênese Genética , Feminino , Humanos , Inflamação , Estresse Oxidativo , Gravidez
2.
Mol Psychiatry ; 26(5): 1561-1577, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32963337

RESUMO

We investigate the role of the mitochondrion, an organelle highly sensitive to environmental agents, in the influence of prenatal air pollution exposure on neurodevelopment and behavior in 96 children with autism spectrum disorder (ASD) [45 with neurodevelopmental regression (NDR); 76% Male; mean (SD) age 10 y 9 m (3 y 9 m)]. Mitochondrial function was assessed using the Seahorse XFe96 in fresh peripheral blood mononuclear cells. Second and third trimester average and maximal daily exposure to fine air particulate matter of diameter ≤2.5 µm (PM2.5) was obtained from the Environmental Protection Agency's Air Quality System. Neurodevelopment was measured using the Vineland Adaptive Behavior Scale 2nd edition and behavior was assessed using the Aberrant Behavior Checklist and Social Responsiveness Scale. Prenatal PM2.5 exposure influenced mitochondrial respiration during childhood, but this relationship was different for those with (r = 0.25-0.40) and without (r = -0.07 to -0.19) NDR. Mediation analysis found that mitochondrial respiration linked to energy production accounted for 25% (SD = 2%) and 10% (SD = 2%) of the effect of average prenatal PM2.5 exposure on neurodevelopment and behavioral symptoms, respectively. Structural equation models estimated that PM2.5 and mitochondrial respiration accounted for 34% (SD = 4%) and 36% (SD = 3%) of the effect on neurodevelopment, respectively, and that behavior was indirectly influenced by mitochondrial respiration through neurodevelopment but directly influenced by prenatal PM2.5. Our results suggest that prenatal exposure to PM2.5 disrupts neurodevelopment and behavior through complex mechanisms, including long-term changes in mitochondrial respiration and that patterns of early development need to be considered when studying the influence of environmental agents on neurodevelopmental outcomes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Criança , Feminino , Humanos , Leucócitos Mononucleares , Masculino , Exposição Materna , Mitocôndrias , Gravidez
3.
J Pers Med ; 12(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36579525

RESUMO

Neurodevelopmental regression (NDR) is an enigmatic event associated with autism spectrum disorder (ASD) during which a child loses previously acquired skills and develops ASD symptoms. In some, a trigger which precedes the NDR event, such as a fever, can be identified, but in many cases no trigger is obvious. We hypothesize that air pollution (PM2.5) may trigger NDR, especially in those children without an identified trigger. Average daily PM2.5, ozone, precipitation and maximum temperature (Tmax) were derived from Environmental Protection Agency models and National Oceanic and Atmospheric Administration monitors based on zip-code information from 83 ASD participants during the six-weeks following the onset month of an NDR event and a reference period defined as one year before and one year after the event. Seasonally adjusted logistic regression (LR) and linear mixed models (LMM) compared cases (with a history of NDR) and matched controls (without a history of NDR). LR models found that the risk of NDR was related to higher PM2.5 during 3 to 6 weeks of the NDR event period, particularly in those without a trigger. Overall, both models converged on NDR being related to a higher PM2.5 and lower Tmax both during the NDR event period as well as the reference period, particularly in those without a known trigger. This temporal pattern suggests that environmental triggers, particularly PM2.5, could be related to NDR, especially in those without an identifiable trigger. Further studies to determine the underlying biological mechanism of this observation could help better understand NDR and provide opportunities to prevent NDR.

4.
J Pers Med ; 11(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803789

RESUMO

We propose that the mitochondrion, an essential cellular organelle, mediates the long-term prenatal environmental effects of disease in autism spectrum disorder (ASD). Many prenatal environmental factors which increase the risk of developing ASD influence mitochondria physiology, including toxicant exposures, immune activation, and nutritional factors. Unique types of mitochondrial dysfunction have been associated with ASD and recent studies have linked prenatal environmental exposures to long-term changes in mitochondrial physiology in children with ASD. A better understanding of the role of the mitochondria in the etiology of ASD can lead to targeted therapeutics and strategies to potentially prevent the development of ASD.

5.
Transl Psychiatry ; 10(1): 223, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636364

RESUMO

Neurodevelopmental regression (NDR) is a subtype of autism spectrum disorder (ASD) that manifests as loss of previously acquired developmental milestones. Early life dysregulation of nutritional metals and/or exposure to toxic metals have been associated with ASD, but the underlying biological mechanisms by which metals influence neurodevelopment remain unclear. We hypothesize that metals influences neurodevelopment through dysregulation of bioenergetics. Prenatal and early postnatal metal exposures were measured using validated tooth-matrix biomarkers in 27 ASD cases (13 with NDR) and 7 typically-developing (TD) controls. Mitochondrial respiration and glycolysis were measured in peripheral blood mononuclear cells using the Seahorse XF96. Children with ASD demonstrated lower prenatal and postnatal Copper (Cu) and prenatal Nickel concentrations and Copper-to-Zinc (Cu/Zn) ratio as compared with TD children. Children with ASD and NDR showed greater metal-related disruption of cellular bioenergetics than children with ASD without NDR. For children with ASD and NDR mitochondrial respiration decreased as prenatal Manganese concentration increased and increased as prenatal Zinc concentration increased; glycolysis decreased with increased exposure to prenatal Manganese and Lead and postnatal Manganese. For children with ASD without a history of NDR, glycolysis increased with increased postnatal exposure to Tin. Language and communication scores in children with ASD were positively related to prenatal Cu exposure and Cu/Zn ratio. This study suggests that prenatal nutritional metals may be important for neurodevelopment in children with ASD, and that exposure to toxic metals and differences in nutritional metal exposures is associated with dysregulation of cellular bioenergetics, particularly in the NDR subtype of ASD.


Assuntos
Transtorno do Espectro Autista , Biomarcadores , Criança , Metabolismo Energético , Feminino , Humanos , Leucócitos Mononucleares , Gravidez , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA