RESUMO
This paper aims to improve the methodology and results accuracy of MEDALUS model for assessing land degradation sensitivity through the application of different data detail levels and by introducing the application of Ellenberg indices in metrics related to vegetation drought sensitivity assessment. For that purpose, the MEDALUS model was applied at 2 levels of detail. Level I (municipality level) implied the use of available large-scale databases and level II (watershed) contains more detailed information about vegetation used in the calculation of the VQI and MQI factors (Fig. S6). The comparison was made using data based on CORINE Land Cover (2012) and forest inventory data, complemented with object-based classification. Results showed that data based on forest inventory data with the application of Ellenberg's indices and object-based classification have one class more, critical (C1 and C2) and that the percentage distribution of classes is different in both quantitative (area size of class sensitivity) and qualitative (aggregation and dispersion of sensitivity classes). The use of data from Forest Management Plans and the application of Ellenberg's indices affect the quality of the results and find its application in the model, especially if these results are used for monitoring and land area management on fine scales. Remote sensed data images (Sentinel-2B) were introduced into the methodology as a very important environmental monitoring tool and model results validation.
Assuntos
Benchmarking , Monitoramento Ambiental , Sérvia , Bases de Dados Factuais , SecasRESUMO
The focus of this research on children's playgrounds with artificial surfaces aimed to establish levels of potentially toxic elements (PTEs) in dust, their origin, and impact on children at 15 playgrounds: 9 on school grounds and 6 on day nurseries in Belgrade (Serbia). Soil samples were taken from the immediate vicinity of the playgrounds to establish the origin of PTEs in the dust samples. Soil analyses revealed the lithogenic origin of Co, Cr, Ni, Fe, Mn, As, Cd, Cu, Pb, and Zn and the anthropogenic origin of As, Cd, Cu, Pb, and Zn. However, in the dust samples, the origin of the elements was different with As, Co, Fe, and Mn originating from the surrounding soil; Cr and Ni levels affected by both atmospheric deposition and the surrounding soil; Cd, Pb, and Zn concentrations impacted by atmospheric deposition; and Cu levels affected by factors of a local character. No noncancer risk was found for any of the individual elements investigated, nor for any of the playgrounds being studied, while a minimal cancer risk was found from As with values greater than 1E-6 at almost all the sites. Based on the results obtained for the spatial distribution of individual PTE levels, it was determined that the surrounding soil and atmospheric deposition have an almost equal impact on noncancer risk values.
Assuntos
Poeira/análise , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Metais/análise , Metais/toxicidade , Poluentes Atmosféricos/análise , Atmosfera , Carcinógenos Ambientais/análise , Carcinógenos Ambientais/toxicidade , Criança , Monitoramento Ambiental/métodos , Humanos , Parques Recreativos , Medição de Risco , Sérvia , Poluentes do Solo/análiseRESUMO
Extreme flooding in May, 2014 affected the sub-catchments of six major rivers in Serbia. The goal of the study was to evaluate the contents of potentially toxic elements (PTEs) As, Cd, Pb, Cr, Ni, Cu, and Zn in flood sediments and arable soils within the affected sub-catchments using regulatory guidelines and background levels. The sub-catchment of West Morava was selected to assess the degree of sediments and soils contamination and environmental risk [using the Pollution index (Pi), Enrichment factor, Geo-accumulation index, and Potential ecological risk index (PERI)] as well as to identify main PTEs sources by Principal component (PCA) and cluster analysis. Contents of Ni, Cr, As, Pb, and Cu above both guidelines and background levels, and of Zn and Cd above background levels were detected in the sediments and soils from all the sub-catchments. Pi indicted that about 95% of the soils and sediments were extremely polluted by Ni and about 65% slightly polluted by Cr, whereas about 90% were not polluted by As, Cd, Pb, Cu, or Zn. Ef indicated minor to moderate enrichment of the soils and sediments by Ni, and Cr. PCA differentiated a geogenic origin of Ni, Cr, As, and Pb, a mixed origin of Cd and Zn, and a predominantly anthropogenic origin of Cu. PERI of the soils and sediments suggested a low overall multi-element ecological risk. The ecological risk of the individual elements (E r i ) for soils was Zn < Cr < Pb < Ni < Cu < As < Cd.
Assuntos
Monitoramento Ambiental , Inundações , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Medição de Risco , Rios/química , SérviaRESUMO
Alluvial soils of valleys of the Danube and Mlave rivers represent priority development areas with favorable conditions for life, agriculture and tourism in eastern Serbia. Operation of the thermal power plant Kostolac results in the emission of potentially toxic pollutants into the air, water and land. The goals were to determine the soil pollution with inorganic pollutants using different pollution indices, to identify of the sources of pollutants by means of principal component analysis and the loading of each factor for individual element assessed by multi-linear regression analyses. Chemical characteristics of the studied area resulted in division of the area into four impact zones upon the distance from main pollutants (power plant blocks and ash disposal dumps). There was no established soil pollution with potentially toxic elements in bulk of the agricultural territory. Two principal components (PC1 and PC2) explained about 73% of variance. Three studied elements (As, Cu and Pb) showed anthropogenic origin of their most concentrations in soil, while other elements (Cd, Co, Cr, Ni and Zn) were of a natural (geological) origin. Single pollution index showed moderate pollution level by Ni. Integrated Nemerow pollution index showed low to no pollution levels, indicating slight ecological risk. There were no established limitations for agricultural production in the studied area, except for the only spot polluted by As due to the great flooding event in the studied year.
Assuntos
Monitoramento Ambiental , Poluição Ambiental/análise , Metais Pesados/análise , Centrais Elétricas , Poluentes do Solo/análise , Solo/química , Agricultura , Rios/química , Sérvia , Poluentes do Solo/química , VentoRESUMO
The main soil properties, concentrations of selected elements (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), and the chemical speciation of each element were determined in urban soil samples taken from urban parks in four Serbian cities (Belgrade, Pancevo, Obrenovac, and Smederevo) exposed to different sources of pollution. Pollution indices (PI, PIN) and factors (MF, ICF, GCF) also were evaluated. The study revealed As and Cd concentrations below the detection limit, whereas the content of Cr, Cu, Fe, Mn, Ni, Pb, and Zn at some sites exceeded the limits established by local regulations, as well as the background values, which may represent an environmental threat. Sequential extraction results show that Fe, Cr, Cu, and Ni were predominantly in the residual fraction at most sites; however, Ni from Pancevo and Smederevo also was bound to the reducible fraction. The presence of Pb at all sites and Zn in Smederevo and Belgrade was mainly associated with the reducible and residual fractions. The highest Mn content was found in the reducible fraction, followed by the acid soluble/exchangeable and residual fractions. Based on the obtained indices and factors, the overall soil status at the selected sampling sites was found to range from the warning limit to slightly polluted, whereby Smederevo had the highest risk, and Pancevo and the control site the lowest risk of contamination by toxic metals.
Assuntos
Metais/análise , Poluentes do Solo/análise , Arsênio/análise , Fracionamento Químico , Cidades , Monitoramento Ambiental/métodos , Indústrias , Metais/química , Metais Pesados/análise , Sérvia , Solo/química , Poluentes do Solo/químicaRESUMO
In this paper, various spatial modelling techniques were applied to analyse changes in soil cover and their impact on soil erosion in the Oplenac wine-producing area in Serbia in the past (1985 and 2013) and in the future (with predictions for 2041). The Integrated Valuation of Ecosystem Services and Trade-offs Sediment Delivery Ratio (InVEST SDR) model and the Modules for Land Use Change Evaluation (MOLUSCE) model, integrated with methods of remote sensing, were successfully applied and were shown to be valid tools for predicting the impact of Land Use Land Cover (LULC) changes when estimating soil loss. The results revealed that the greatest impact of land use changes between 1985 and 2013 was on a reduction in areas under vineyards and an extension of meadow and pasturelands as an individual and social response to economic conditions during the research period. The forecast for 2041 reflected the trends observed in the previous period, with the greatest changes witnessing an increase in urban areas and a decrease in areas of arable land. It was also found that the effect of LULC changes on spatio-temporal patterns in the Oplenac wine-producing area did not have a major impact on soil loss, meaning this area, with its good agro-climatic characteristics, is suitable for the intensification of agricultural production.
Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental/métodos , Solo/química , Agricultura/métodos , Sérvia , Análise Espaço-Temporal , VinhoRESUMO
The primary focus of this research was the chemical fractionation of potentially toxic elements (PTEs) and their presence in several industrialised cities in Serbia. Furthermore, their origin, contamination levels, and environmental and human health risks were assessed. The results indicated that the examined soils were characterised by slightly higher Cu, Ni, Pb, and Zn levels than those set by European and national regulations. These elevated Cu, Pb, and Zn concentrations were caused by intensive traffic and proximity to industry, whereas the higher Ni levels were a result of the specific geological substrate of the soil in the study area. The environmental risk was found to be low and there was no enrichment/contamination of the soil with these elements, except in the case of Pb, for which moderate to significant enrichment was found. Lead also poses a potential non-carcinogenic risk to children through ingestion and requires special attention due to the fact that a significant proportion of this element was present in the tested soil samples in a potentially available form. Analysis of the health risks showed that children are more at risk than adults from contaminants and that ingestion is the riskiest exposure route. The carcinogenic risk was within the acceptable limits.
Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Fracionamento Químico , Criança , Cidades , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco , Sérvia , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidadeRESUMO
Concentrations of potentially toxic elements (PTEs) (Al, As, Cd, Cr, Cu, Ni, Pb, and Zn) were measured in topsoil samples collected from parks in the cities of Salzburg (Austria), Thessaloniki (Greece), and Belgrade (Serbia) in order to assess the distribution of PTEs in the urban environment, discriminate natural (lithogenic) and anthropogenic contributions, identify possible sources of pollution, and compare levels of pollution between the cities. An assessment of the health risks caused by exposure to PTEs through different pathways was also conducted. The study revealed that, with the exception of Pb in Salzburg, levels of PTEs in the soils in polluted urban parks were higher than in unpolluted ones, but still lower than those recorded in other European soils. Results of sequential analyses showed that Al, Cr, and Ni were found in residual phases, proving their predominantly lithogenic origin and their low mobility. In contrast, the influence of anthropogenic factors on Cu, Pb, and Zn was evident. Site-dependent variations showed that the highest concentrations of As, Cu, Pb, and Zn of anthropogenic origin were recorded in Salzburg, while the highest levels of Al, Cr, and Ni of lithogenic origin were recorded in Belgrade and Thessaloniki, which reflects the specificity of the geological substrates. Results obtained for the health risk assessment showed that no human health risk was found for either children or adults.
Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Áustria , Criança , Cidades , Monitoramento Ambiental , Grécia , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco , Sérvia , Solo , Poluentes do Solo/análiseRESUMO
Long-term application of P fertilizers may eventually result in excess and/or toxic accumulations of trace elements and microelements in soil. The effect of monoammonium-phosphate (MAP) on basic soil properties (pH, CEC, texture), the total content of C, N, and F, hot acid-extractable Cu, Zn, Ni, Cr, Pb, Cd, Co, As, Hg, and F, and the content of extractable macro- and trace elements (P, K, Ca, Mg, Al, Fe, Zn, Cu, Ni, Pb, Cd, F) were studied on a Stagnosol soil. Phosphate fertilizer had been applied (26, 39, and 52 kg P ha(-1)) over a 40-yr period. Phosphorus fertilization significantly decreased pH and increased clay content of the soil. Increases were detected in available P, exchangeable Al, Ca, cation exchange capacity (CEC), and clay content. The content of hot acid-extractable Pb increased, whereas the content of diethylenetriaminepentaacetic acid-extractable Pb decreased in accordance with applied rates of MAP. The status of some hot acid-extractable trace elements (Cu, Zn, Ni, and Co) did not change after 40 yr of MAP application, whereas Hg and Cd increased. However, despite the statistically significant increases in the amounts of some potentially toxic elements, they did not accumulate to concentrations considered toxic as overall concentrations are far below the maximum allowed concentrations for natural unpolluted soils.
Assuntos
Elementos Químicos , Fertilizantes , Solo/análise , Fosfatos/administração & dosagem , Sérvia , Fatores de TempoRESUMO
The mobility (fractionation) of rare earth elements (REEs) and their possible impacts on ecosystems are still relatively unknown. Soil samples were collected from two sites in central Serbia, an unpolluted mountain region (site 1) and a forest near a city (site 2). In order to investigate REE fractions (acid-soluble/exchangeable, reducible, oxidizable, and residual) in soils, BCR sequential extraction was performed. Additionally, the content of REEs was also determined in stipes and caps of the mushroom Macrolepiota procera, growing in the observed sites. Sc, Y, and lanthanide contents were determined by inductively coupled plasma mass spectrometry (ICP-MS), and results were subjected to multivariate data analysis. Application of pattern recognition technique revealed the existence of two distinguished clusters belonging to different geographical sites and determined by greater levels of Sc, Y, and lanthanides in Goc soil compared to Trstenik soil. Additionally, PCA analysis showed that REEs in soil were concentrated in two groups: the first consisted of elements belonging to light REEs and the second contained heavy REEs. These results suggest that the distribution of REEs in soils could indicate the geographical origin and type of soil. The bioconcentration factors and translocation factors for each REE were also calculated. This study provides baseline data on the rare earth element levels in the wild edible mushroom M. procera, growing in Serbia. In terms of bioconcentration and bioexclusion concept, Sc, Y, and REEs were bioexcluded in M. procera for both studied sites.
Assuntos
Agaricales/química , Elementos da Série dos Lantanídeos/análise , Escândio/análise , Poluentes do Solo/análise , Ítrio/análise , Florestas , Elementos da Série dos Lantanídeos/farmacocinética , Análise Multivariada , Análise de Componente Principal , Escândio/farmacocinética , Sérvia , Solo/química , Distribuição Tecidual , Ítrio/farmacocinéticaRESUMO
Elevated arsenic (As) concentrations in soil are often found in the vicinity of certain mineral deposits that have been, or are currently, under exploitation, regardless of the target resource. Detailed study of such areas for safe agriculture requires considerable financial costs and long periods of time. Application of an appropriate spatial model that describes the behavior of arsenic in soil and plants can significantly ease the whole investigation process. This paper presents a model of ecological security of an area that, in the past, was an antimony mine and has a naturally high content of arsenic. For simulation and modeling the geographic information science (GIS) technology with the inserted predictors influencing the accessibility of As and its content in plants was used. The results obtained were the following: (1) a categorization of contaminated soils according to soil properties was developed; (2) the proposed methodology allows focusing on particular suspect area saving an energy and human resource input; and (3) new safe areas for growing crops in contaminated area were modeled. The application of the proposed model of As solubility to various crops grown around a former antimony mine near the village of Lisa, southwest Serbia showed that significant expansion of the areas suitable for growing potato, raspberry, and pasture was possible.