Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Psychiatry ; 29(8): 2346-2358, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38486047

RESUMO

Recent studies have sparked renewed interest in the therapeutic potential of psychedelics for treating depression and other mental health conditions. Simultaneously, the novel psychoactive substances (NPS) phenomenon, with a huge number of NPS emerging constantly, has changed remarkably the illicit drug market, being their scientific evaluation an urgent need. Thus, this study aims to elucidate the impact of amino-terminal modifications to the 5-MeO-DMT molecule on its interactions with serotonin receptors and transporters, as well as its psychoactive and thermoregulatory properties. Our findings demonstrated, using radioligand binding methodologies, that all examined 5-MeO-tryptamines exhibited selectivity for 5-HT1AR over 5-HT2AR. In fact, computational docking analyses predicted a better interaction in the 5-HT1AR binding pocket compared to 5-HT2AR. Our investigation also proved the interaction of these compounds with SERT, revealing that the molecular size of the amino group significantly influenced their affinity. Subsequent experiments involving serotonin uptake, electrophysiology, and superfusion release assays confirmed 5-MeO-pyr-T as the most potent partial 5-HT releaser tested. All tested tryptamines elicited, to some degree, the head twitch response (HTR) in mice, indicative of a potential hallucinogenic effect and mainly mediated by 5-HT2AR activation. However, 5-HT1AR was also shown to be implicated in the hallucinogenic effect, and its activation attenuated the HTR. In fact, tryptamines that produced a higher hypothermic response, mediated by 5-HT1AR, tended to exhibit a lower hallucinogenic effect, highlighting the opposite role of both 5-HT receptors. Moreover, although some 5-MeO-tryptamines elicited very low HTR, they still act as potent 5-HT2AR agonists. In summary, this research offers a comprehensive understanding of the psychopharmacological profile of various amino-substituted 5-MeO-tryptamines, keeping structural aspects in focus and accumulating valuable data in the frame of NPS. Moreover, the unique characteristics of some 5-MeO-tryptamines render them intriguing molecules as mixed-action drugs and provide insight within the search of non-hallucinogenic but 5-HT2AR ligands as therapeutical agents.


Assuntos
Simulação de Acoplamento Molecular , Receptor 5-HT2A de Serotonina , Serotonina , Animais , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Relação Estrutura-Atividade , Camundongos , Humanos , Simulação de Acoplamento Molecular/métodos , Serotonina/metabolismo , Masculino , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Alucinógenos/farmacologia , Psicotrópicos/farmacologia , Regulação da Temperatura Corporal/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Metoxidimetiltriptaminas/farmacologia , Metoxidimetiltriptaminas/metabolismo , Células HEK293 , Receptores de Serotonina/metabolismo , Receptores de Serotonina/efeitos dos fármacos
2.
J Neurochem ; 160(2): 218-233, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34816436

RESUMO

N-ethyl-pentylone (NEP), also known as 'ephylone' and N-ethylnorpentylone, has been identified as one of the most recent novel psychostimulants to emerge into the illicit drug market and it has been associated with some intoxications and even fatalities. However, little is known about the consequences of its repeated consumption as well as the role of the monoaminergic system in such consequences. Thus, the aim of our study was to investigate the neurochemical profile and the behavioural effects after both acute and repeated NEP exposure. Male OF1 mice were acutely (1, 3, 10 mg/kg, i.p.) or repeatedly (1, 3, 10 mg/kg, i.p., 5 days, twice/day) exposed to NEP, and anxiety-like behaviour, aggressiveness, social interaction, depressive-like symptoms, body temperature, changes in monoaminergic enzymes and neurotransmitters levels as well as ΔFosB in striatum and prefrontal cortex (PFC) from post-mortem tissue were analysed short after drug-exposure or during drug-withdrawal. Acute administration of NEP induced anxiolytic effects but also an aggressive behaviour and social exploration deficits in mice, which persist during NEP-withdrawal. Moreover, NEP induced hyperthermia as well as depressive-like symptoms after repeated administrations that may be related to the decrease in serotonin and noradrenaline levels observed in striatum and PFC. Finally, the long-term increase in ΔFosB levels in striatum after NEP chronic exposure points to a high risk of dependence. Altogether indicates that NEP consumption induces different neurological and neuropsychiatric disorders accompanied by changes in the monoaminergic system, posing a threat to public health.


Assuntos
Comportamento Animal/efeitos dos fármacos , Benzodioxóis/toxicidade , Butilaminas/toxicidade , Estimulantes do Sistema Nervoso Central/toxicidade , Animais , Masculino , Camundongos
3.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216339

RESUMO

Changes in the molecular structure of synthetic cathinones has led to an increase in the number of novel emerging drugs in the illicit drug market at an unprecedented rate. Unfortunately, little is known about the neuropsychopharmacology of recently emerged halogen-substituted α-PVP derivatives. Thus, the aim of this study was to investigate the role of para- and meta-halogen (F-, Cl-, and Br-) substitutions on the in vitro, in silico, and in vivo effects of α-pyrrolidinopentiophenone (α-PVP) derivatives. HEK293 cells expressing the human dopamine or serotonin transporter (hDAT and hSERT) were used for the uptake inhibition and transporter affinity assays. Molecular docking was used to model the interaction mechanism against DAT. Swiss CD-1 mice were used for the horizontal locomotor activity, open field test, and conditioned place preference paradigm. All compounds demonstrated potent DA uptake inhibition and higher DAT selectivity than cocaine. Meta-substituted cathinones showed higher DAT/SERT ratios than their para- analogs, which correlates with an increased psychostimulant effect in vivo and with different meta- and para-in silico interactions at DAT. Moreover, all compounds induced rewarding and acute anxiogenic effects in mice. In conclusion, the present study demonstrates the role of meta- and para-halogen substitutions in the mechanism of action and provides the first evidence of the rewarding and anxiety-like properties of halogenated α-PVP derivatives.


Assuntos
Estimulantes do Sistema Nervoso Central/efeitos adversos , Halogênios/efeitos adversos , Drogas Ilícitas/efeitos adversos , Pentanonas/efeitos adversos , Pirrolidinas/efeitos adversos , Animais , Ansiedade/induzido quimicamente , Ansiedade/metabolismo , Linhagem Celular , Cocaína/efeitos adversos , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Células HEK293 , Humanos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Simulação de Acoplamento Molecular/métodos , Recompensa , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
4.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361071

RESUMO

3,4-Methylenedioxypyrovalerone (MDPV) is a new psychoactive substance (NPS) and the most widespread and life-threatening synthetic cathinone of the "bath salts". Preclinical research has proven the cocaine-like psychostimulant effects of MDPV and its potential for abuse. Cannabidiol (CBD) is a non-psychotropic phytocannabinoid that has emerged as a new potential treatment for drug addiction. Here, we tested the effects of CBD (20 mg/kg) on MDPV (2 mg/kg)-induced conditioned place preference and MDPV (0.05 and 0.075 mg/kg/infusion) self-administration paradigms. In addition, we assessed the effects of the co-administration of CBD and MDPV (3 and 4 mg/kg) on anxiety-like behaviour using the elevated plus maze (EPM). CBD mitigated the MDPV-induced conditioned place preference. On the contrary, CBD administration throughout the MDPV (0.075 mg/kg/infusion) self-administration increased drug-seeking and taking behaviours, but only in the high-responders group of mice. Furthermore, CBD exerted anxiolytic-like effects, exclusively in MDPV-treated mice. Taken together, our results indicate that CBD modulation of MDPV-induced motivational responses in mice varies depending on the requirements of the learning task, resulting in a complex response. Therefore, further research attempting to decipher the behavioural and molecular interactions between CBD and MDPV is needed.


Assuntos
Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Benzodioxóis/toxicidade , Canabidiol/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Pirrolidinas/toxicidade , Inibidores da Captação Adrenérgica/toxicidade , Animais , Anticonvulsivantes/farmacologia , Ansiedade/induzido quimicamente , Ansiedade/patologia , Condicionamento Clássico/efeitos dos fármacos , Masculino , Camundongos , Catinona Sintética
5.
Front Psychiatry ; 13: 990405, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262632

RESUMO

The utility of classical drugs used to treat psychiatric disorders (e.g., antidepressants, anxiolytics) is often limited by issues of lack of efficacy, delayed onset of action or side effects. Psychoactive substances have a long history of being used as tools to alter consciousness and as a gateway to approach the unknown and the divinities. These substances were initially obtained from plants and animals and more recently by chemical synthesis, and its consumption evolved toward a more recreational use, leading to drug abuse-related disorders, trafficking, and subsequent banning by the authorities. However, these substances, by modulation of certain neurochemical pathways, have been proven to have a beneficial effect on some psychiatric disorders. This evidence obtained under medically controlled conditions and often associated with psychotherapy, makes these substances an alternative to conventional medicines, to which in many cases the patient does not respond properly. Such disorders include post-traumatic stress disease and treatment-resistant depression, for which classical drugs such as MDMA, ketamine, psilocybin and LSD, among others, have already been clinically tested, reporting successful outcomes. The irruption of new psychoactive substances (NPS), especially during the last decade and despite their recreational and illicit uses, has enlarged the library of substances with potential utility on these disorders. In fact, many of them were synthetized with therapeutic purposes and were withdrawn for concrete reasons (e.g., adverse effects, improper pharmacological profile). In this review we focus on the basis, existing evidence and possible use of synthetic cathinones and psychedelics (specially tryptamines) for the treatment of mental illnesses and the properties that should be found in NPS to obtain new therapeutic compounds.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35500841

RESUMO

N-ethyl-pentedrone (NEPD, 2-(ethylamino)-1-phenyl-1-pentanone) is one of the latest synthetic cathinone derivatives that emerged into the illicit drug market. This drug has psychostimulant properties and has been related with several intoxications and even fatalities. However, information about the consequences of its acute and repeated consumption is lacking. Thus, the aim of our study was to investigate the behavioral effects after both acute and repeated NEPD exposure as well as the neurochemical changes. Male OF1 mice were treated with an acute dose (1, 3 or 10 mg/kg, i.p.) or received repeated injections of these doses (twice/day, 5 days) of NEPD. Shortly after drug-exposure or during drug-withdrawal, anxiety-like behavior, aggressiveness, social interaction, depressive-like symptoms, body weight and temperature were assessed. Also, monoamine synthesis enzymes, levels of neurotransmitters and their precursors and main metabolites, as well as ΔFosB, were determined in striatum and prefrontal cortex from post-mortem tissue. Acute administration of NEPD induced anxiolytic effects and reduced social exploration whereas during withdrawal after repeated administration the anxiolytic effect had vanished, and the reduced social exploration was still present and accompanied with increased aggressive behavior. Moreover, NEPD (10 mg/kg) induced slight hyperthermia and reduced weight gain during the repeated administration, whereas increased locomotor activity and lack of depressive symptoms were found during withdrawal. This was accompanied by increased plasma corticosterone and decrease in striatal dopamine. Finally, the long-lasting and robust increase in ΔFosB levels found in striatum after NEPD chronic exposure suggests a high risk of dependence. The increased aggressivity and locomotor activity, together with this potential of inducing dependence justify a warning about the risks of consumption of NEPD if translated to humans.


Assuntos
Estimulantes do Sistema Nervoso Central , Pentanonas , Agressão , Animais , Masculino , Metilaminas , Camundongos
7.
Front Pharmacol ; 12: 749429, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764870

RESUMO

Several new synthetic cathinones, which mimic the effect of classical psychostimulants such as cocaine or MDMA, have appeared in the global illicit drug market in the last decades. In fact, the illicit drug market is continually evolving by constantly adding small modifications to the common chemical structure of synthetic cathinones. Thus, the aim of this study was to investigate the in vitro and in vivo structure-activity relationship (SAR) of six novel synthetic cathinones currently popular as recreational drugs, pentedrone, pentylone, N-ethyl-pentedrone (NEPD), N-ethyl-pentylone (NEP), 4-methyl-pentedrone (4-MPD), and 4-methyl-ethylaminopentedrone (4-MeAP), which structurally differ in the absence or presence of different aromatic substituents and in their amino terminal group. Human embryonic kidney (HEK293) cells expressing the human isoforms of SERT and DAT were used for the uptake inhibition and release assays. Moreover, Swiss CD-1 mice were used to investigate the psychostimulant effect, rewarding properties (3, 10, and 30 mg/kg, i.p.), and the induction of immediate-early genes (IEGs), such as Arc and c-fos in the dorsal striatum (DS) and ventral striatum (VS) as well as bdnf in the medial prefrontal cortex (mPFC), of the test compounds. Our results demonstrated that all tested synthetic cathinones are potent dopamine (DA) uptake inhibitors, especially the N-ethyl analogs, while the ring-substituted cathinones tested showed higher potency as SERT inhibitors than their no ring-substituted analogs. Moreover, unlike NEP, the remaining test compounds showed clear "hybrid" properties, acting as DAT blockers but SERT substrates. Regarding the locomotion, NEP and NEPD were more efficacious (10 mg/kg) than their N-methyl analogs, which correlates with their higher potency inhibiting the DAT and an overexpression of Arc levels in the DS and VS. Furthermore, all compounds tested induced an increase in c-fos expression in the DS, except for 4-MPD, the least effective compound in inducing hyperlocomotion. Moreover, NEP induced an up-regulation of bdnf in the mPFC that correlates with its 5-HTergic properties. Finally, the present study demonstrated for the first time that NEP, 4-MPD, and 4-MeAP induce reward in mice. Altogether, this study provides valuable information about the mechanism of action and psychostimulant and rewarding properties as well as changes in the expression of IEGs related to addiction induced by novel second-generation synthetic cathinones.

8.
Toxicol Appl Pharmacol ; 244(3): 344-53, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20132834

RESUMO

Previous work by our group demonstrated that homomeric alpha7 nicotinic acetylcholine receptors (nAChR) play a role in the neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA), as well as the binding affinity of this drug to these receptors. Here we studied the effect of MDMA on the activation of nAChR subtypes, the consequent calcium mobilization, and calpain/caspase 3 activation because prolonged Ca(2+) increase could contribute to cytotoxicity. As techniques, we used fluorimetry in Fluo-4-loaded PC12 cells and electrophysiology in Xenopus oocytes. MDMA produced a rapid and sustained increase in calcium without reaching the maximum effect induced by ACh. It also concentration-dependently inhibited the response induced by ACh, nicotine, and the specific alpha7 agonist PNU 282987 with IC(50) values in the low micromolar range. Similarly, MDMA induced inward currents in Xenopus oocytes transfected with human alpha7 but not with alpha4beta2 nAChR and inhibited ACh-induced currents in both receptors in a concentration-dependent manner. The calcium response was inhibited by methyllycaconitine (MLA) and alpha-bungarotoxin but not by dihydro-beta-erythroidine. These results therefore indicate that MDMA acts as a partial agonist on alpha7 nAChRs and as an antagonist on the heteromeric subtypes. Subsequently, calcium-induced Ca(2+) release from the endoplasmic reticulum and entry through voltage-operated calcium channels are also implicated as proved using specific antagonists. In addition, treatment with MDMA for 24 h significantly increased basal Ca(2+) levels and induced an increase in alpha-spectrin breakdown products, which indicates that calpain and caspase 3 were activated. These effects were inhibited by pretreatment with MLA. Moreover, pretreatment with MDMA induced functional upregulation of calcium responses to specific agonists of both heteromeric and alpha7 nAChR. Sustained calcium entry and calpain activation could favor the activation of Ca(2+)-dependent enzymes such as protein kinase C and nitric oxide synthase, which are involved in the generation of ROS and the blockade of the dopamine transporter. This, together with caspase 3 activation, must play a role in MDMA-induced cytotoxicity.


Assuntos
Cálcio/metabolismo , Calpaína/metabolismo , Caspase 3/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Receptores Nicotínicos/efeitos dos fármacos , Acetilcolina/metabolismo , Animais , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Ativação Enzimática , Humanos , Nicotina/metabolismo , Agonistas Nicotínicos/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Células PC12 , Ratos , Receptores Nicotínicos/metabolismo , Espectrina/metabolismo , Regulação para Cima/efeitos dos fármacos , Xenopus/metabolismo
9.
J Psychopharmacol ; 33(9): 1170-1182, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31219369

RESUMO

BACKGROUND: 3,4-Methylenedioxymethamphetamine (MDMA) is still one of the most consumed drugs by adolescents. Its abuse is related with cognitive impairment, which seems due to maladaptive plasticity and neural stress. In turn, new hypotheses suggest that Alzheimer's disease (AD) may be promoted by neural stressors. AIMS AND METHODS: To test if there is an increase in vulnerability to AD after chronic MDMA consumption, we investigated the effects of this drug on recognition memory and its neurotoxic and neuroplastic effects in a transgenic mouse model of presymptomatic familiar AD (APP/PS1 dE9, Tg). RESULTS: MDMA-treated animals showed recognition memory deficits, regardless of genotype, which were accompanied by changes in plasticity markers. Tg mice showed an impaired expression of Arc compared with wild-type animals, but exposure to MDMA induced an increase in the expression of this factor of the same percentage in both genotypes. However, the expression of c-fos, BDNF and p-CREB was not significantly altered by MDMA treatment in Tg mice. Although Tg mice had higher free choline levels than wild-type mice (about 123%), MDMA did not modify these levels in any case, ruling out any specific effect of this drug on the acetylcholine pathway. MDMA treatment significantly increased the presence of cortical amyloid plaques, as well as Aß40, Aß42 and secreted APPß levels in Tg mice. These plaques were accompanied by increased tau phosphorylation (S199), which does not seem to occur via the canonic pathway involving AKT, CDK5 or GSK3ß. CONCLUSIONS: The present results support previous evidences that MDMA can contribute to the amyloid cascade.


Assuntos
Peptídeos beta-Amiloides/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
10.
Brain Res ; 1111(1): 72-82, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16889759

RESUMO

Ecstasy (MDMA) street tablets often contain several other compounds in addition to MDMA, particularly caffeine. Then, it becomes necessary to study the consequences of caffeine plus MDMA combination. MDMA (1 mg/kg) elicited an analgesic response both at the spinal and supraspinal levels. However, when associated, MDMA and caffeine did not show any synergistic interaction. When caffeine was administered prior to MDMA, a potentiation of locomotor activity was observed, which consisted in an increase in maximal values and in a prolonged time of activity. In the neurotoxicity studies, a hyperthermic effect of MDMA was observed. Although caffeine alone failed to alter body temperature, it potentiated MDMA-induced hyperthermia. This association also significantly increased MDMA lethality (from 22% to 34%). Following administration of MDMA to rats, there was a persistent decrease in the number of serotonin transporter sites in the cortex, striatum and hippocampus, which was potentiated by caffeine co-treatment. This MDMA toxicity in rats was accompanied by a transient dopaminergic impairment in the striatum, measured as decreased [(3)H]WIN35428 binding sites, by 31% 3 days after treatment, which was not modified by caffeine. A transient down-regulation of 5-HT(2) receptors occurred in the cortex of MDMA-treated rats, whose recovery was slowed by co-treatment with caffeine. In conclusion, the association of MDMA with caffeine does not generate any beneficial effects at the antinociceptive level. The acute effects stemming from this association, in tandem with the final potentiation of serotonergic terminals injury, provide evidence of the potentially greater long-term adverse effects of this particular recreational drug combination.


Assuntos
Analgésicos/efeitos adversos , Encéfalo/efeitos dos fármacos , Cafeína/efeitos adversos , N-Metil-3,4-Metilenodioxianfetamina/efeitos adversos , Dor/tratamento farmacológico , Analgésicos/toxicidade , Animais , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Cafeína/toxicidade , Estimulantes do Sistema Nervoso Central/efeitos adversos , Estimulantes do Sistema Nervoso Central/toxicidade , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Interações Medicamentosas/fisiologia , Febre/induzido quimicamente , Febre/fisiopatologia , Alucinógenos/efeitos adversos , Alucinógenos/toxicidade , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Neurotoxinas/efeitos adversos , Neurotoxinas/toxicidade , Dor/induzido quimicamente , Dor/fisiopatologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Receptores de Serotonina/efeitos dos fármacos , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA