Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Phys Rev Lett ; 131(8): 085101, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37683150

RESUMO

Warm dense matter (WDM) represents a highly excited state that lies at the intersection of solids, plasmas, and liquids and that cannot be described by equilibrium theories. The transient nature of this state when created in a laboratory, as well as the difficulties in probing the strongly coupled interactions between the electrons and the ions, make it challenging to develop a complete understanding of matter in this regime. In this work, by exciting isolated ∼8 nm copper nanoparticles with a femtosecond laser below the ablation threshold, we create uniformly excited WDM. Using photoelectron spectroscopy, we measure the instantaneous electron temperature and extract the electron-ion coupling of the nanoparticle as it undergoes a solid-to-WDM phase transition. By comparing with state-of-the-art theories, we confirm that the superheated nanoparticles lie at the boundary between hot solids and plasmas, with associated strong electron-ion coupling. This is evidenced both by a fast energy loss of electrons to ions, and a strong modulation of the electron temperature induced by strong acoustic breathing modes that change the nanoparticle volume. This work demonstrates a new route for experimental exploration of the exotic properties of WDM.

2.
Glob Chang Biol ; 27(1): 13-26, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075199

RESUMO

In an era of rapid global change, our ability to understand and predict Earth's natural systems is lagging behind our ability to monitor and measure changes in the biosphere. Bottlenecks to informing models with observations have reduced our capacity to fully exploit the growing volume and variety of available data. Here, we take a critical look at the information infrastructure that connects ecosystem modeling and measurement efforts, and propose a roadmap to community cyberinfrastructure development that can reduce the divisions between empirical research and modeling and accelerate the pace of discovery. A new era of data-model integration requires investment in accessible, scalable, and transparent tools that integrate the expertise of the whole community, including both modelers and empiricists. This roadmap focuses on five key opportunities for community tools: the underlying foundations of community cyberinfrastructure; data ingest; calibration of models to data; model-data benchmarking; and data assimilation and ecological forecasting. This community-driven approach is a key to meeting the pressing needs of science and society in the 21st century.


Assuntos
Ecossistema , Modelos Teóricos , Previsões
3.
Glob Chang Biol ; 26(3): 1820-1832, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31730282

RESUMO

To meet rising demands for agricultural products, existing agricultural lands must either produce more or expand in area. Yield gaps (YGs)-the difference between current and potential yield of agricultural systems-indicate the ability to increase output while holding land area constant. Here, we assess YGs in global grazed-only permanent pasture lands using a climate binning approach. We create a snapshot of circa 2000 empirical yields for meat and milk production from cattle, sheep, and goats by sorting pastures into climate bins defined by total annual precipitation and growing degree-days. We then estimate YGs from intra-bin yield comparisons. We evaluate YG patterns across three FAO definitions of grazed livestock agroecosystems (arid, humid, and temperate), and groups of animal production systems that vary in animal types and animal products. For all subcategories of grazed-only permanent pasture assessed, we find potential to increase productivity several-fold over current levels. However, because productivity of grazed pasture systems is generally low, even large relative increases in yield translated to small absolute gains in global protein production. In our dataset, milk-focused production systems were found to be seven times as productive as meat-focused production systems regardless of animal type, while cattle were four times as productive as sheep and goats regardless of animal output type. Sustainable intensification of pasture is most promising for local development, where large relative increases in production can substantially increase incomes or "spare" large amounts of land for other uses. Our results motivate the need for further studies to target agroecological and economic limitations on productivity to improve YG estimates and identify sustainable pathways toward intensification.


Assuntos
Agricultura , Clima , Animais , Bovinos , Gado , Carne , Ovinos
4.
J Chem Phys ; 151(10): 104308, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521092

RESUMO

We have investigated the ionization and fragmentation of a metallo-endohedral fullerene, Sc3N@C80, using ultrashort (10 fs) x-ray pulses. Following selective ionization of a Sc (1s) electron (hν = 4.55 keV), an Auger cascade leads predominantly to either a vibrationally cold multiply charged parent molecule or multifragmentation of the carbon cage following a phase transition. In contrast to previous studies, no intermediate regime of C2 evaporation from the carbon cage is observed. A time-delayed, hard x-ray pulse (hν = 5.0 keV) was used to attempt to probe the electron transfer dynamics between the encapsulated Sc species and the carbon cage. A small but significant change in the intensity of Sc-containing fragment ions and coincidence counts for a delay of 100 fs compared to 0 fs, as well as an increase in the yield of small carbon fragment ions, may be indicative of incomplete charge transfer from the carbon cage on the sub-100 fs time scale.

5.
Nano Lett ; 16(3): 1517-22, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26789406

RESUMO

Single-walled carbon nanotubes (SWCNTs) are considered pivotal components for molecular electronics. Techniques for SWCNT lithography today lack simplicity, flexibility, and speed of direct, oriented deposition at specific target locations. In this paper SWCNTs are directly drawn and placed with chemical identification and demonstrated orientation using fountain pen nanolithography (FPN) under ambient conditions. Placement across specific electrical contacts with such alignment is demonstrated and characterized. The fundamental basis of the drawing process with alignment has potential applications for other related systems such as inorganic nanotubes, polymers, and biological molecules.

6.
J Phys Chem A ; 119(47): 11504-8, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26551039

RESUMO

The electronic structure and photoinduced dynamics of fullerenes, especially C60, is of great interest because these molecules are model systems for more complex molecules and nanomaterials. In this work we have used Rydberg Fingerprint Spectroscopy to determine the relative ionization intensities from excited SAMO (Rydberg-like) states in C60 as a function of laser wavelength. The relative ionization intensities are then compared to the ratio of the photoionization widths of the Rydberg-like states, computed in time-dependent density functional theory (TD-DFT). The agreement is remarkably good when the same photon order is required to energetically access the excited states. This illustrates the predictive potential of quantum chemistry for studying photoionization of large, complex molecules as well as confirming the assumption that is often made concerning the multiphoton excitation and rapid energy redistribution in the fullerenes.

7.
J Phys Chem A ; 118(37): 8067-73, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24175586

RESUMO

Gas-phase fullerenes emit thermal electrons after femtosecond laser excitation in the wavelength range 400-800 nm. We have used angular-resolved photoelectron spectroscopy (PES) to study the influence of the laser's electric field on the dynamics of the thermally emitted electrons. The laser field introduces an asymmetry in the thermal electron distributions with respect to the laser polarization direction, which was confirmed by carrying out experiments at different wavelengths. A simple model could reproduce the trends in measured apparent temperatures in the PES. The asymmetry effect was exploited in a pump-probe experiment to estimate the time scale for thermal electron emission. It was found that, when 400 nm, 120 fs laser pulses of 2 TW cm(-2) intensity are used, thermal electrons are emitted up to ca. 300 fs after the peak of the laser pulse. The pump-probe scheme should be applicable to a wider range of complex molecules and clusters showing thermal electron emission on a femtosecond time scale.

8.
Chem Soc Rev ; 42(13): 5661-71, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23612604

RESUMO

Fullerenes are interesting model systems for probing the complex, fundamental electron dynamics and ionisation mechanisms of large molecules and nanoparticles. In this Tutorial Review we explain how recent experimental and theoretical advances are providing insight into the interesting phenomenon of thermal electron emission from molecular systems and the properties of hydrogenic, diffuse, excited electronic states, known as superatom molecular orbitals, which are responsible for relatively simple, well-resolved structure in fs laser photoelectron spectra of fullerenes. We focus on the application of velocity map imaging combined with fs laser photoionisation to study angular-resolved photoelectron emission.

9.
Nano Lett ; 13(2): 397-401, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23272804

RESUMO

We demonstrate an electrically tunable 2D photonic crystal array constructed from vertically aligned carbon nanofibers. The nanofibers are actuated by applying a voltage between adjacent carbon nanofiber pairs grown directly on metal electrodes, thus dynamically changing the form factor of the photonic crystal lattice. The change in optical properties is characterized using optical diffraction and ellipsometry. The experimental results are shown to be in agreement with theoretical predictions and provide a proof-of-principle for rapidly switchable photonic crystals operating in the visible that can be fabricated using standard nanolithography techniques combined with plasma CVD growth of the nanofibers.

10.
Chemphyschem ; 14(14): 3332-40, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23929667

RESUMO

Super-atom molecular orbitals (SAMOs) are diffuse hydrogen-like orbitals defined by the shallow potential at the centre of hollow molecules such as fullerenes. The SAMO excited states differ from the Rydberg states by the significant electronic density present inside the carbon cage. We provide a detailed computational study of SAMO and Rydberg states and an experimental characterization of SAMO excited electronic states for gas-phase C(60) molecules by photoelectron spectroscopy. A large band of 500 excited states was computed using time-dependent density functional theory. We show that due to their diffuse character, the photoionization widths of the SAMO and Rydberg states are orders of magnitude larger than those of the isoenergetic non-SAMO excited states. Moreover, in the range of kinetic energies experimentally measured, only the SAMO states photoionize significantly on the timescale of the femtosecond laser experiments. Single photon ionization of the SAMO states dominates the photoelectron spectrum for relatively low laser intensities. The computed photoelectron spectra and photoelectron angular distributions are in good agreement with the experimental results.

11.
J Chem Phys ; 139(8): 084309, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24006999

RESUMO

Angular-resolved photoelectron spectroscopy using wavelength-tuneable femtosecond laser pulses is presented for a series of fullerenes, namely, C70, C82, and Sc3N@C80. The photoelectron kinetic energy distributions for the three molecules show typical thermal electron spectra with a superimposed peak structure that is the result of one-photon ionization of diffuse low-angular momenta states with electron density close to the carbon cage and that are related to so-called super atom molecular orbitals. Photoelectron angular distributions confirm this assignment. The observed structure is less prominent compared to the thermal electron background than what was observed in C60. It can be concluded that hot electron emission is the main ionization channel for the larger and more complex molecules for these excitation conditions.

12.
Nano Lett ; 12(7): 3526-31, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22708530

RESUMO

Classical continuum mechanics is used extensively to predict the properties of nanoscale materials such as graphene. The bending rigidity, κ, is an important parameter that is used, for example, to predict the performance of graphene nanoelectromechanical devices and also ripple formation. Despite its importance, there is a large spread in the theoretical predictions of κ for few-layer graphene. We have used the snap-through behavior of convex buckled graphene membranes under the application of electrostatic pressure to determine experimentally values of κ for double-layer graphene membranes. We demonstrate how to prepare convex-buckled suspended graphene ribbons and fully clamped suspended membranes and show how the determination of the curvature of the membranes and the critical snap-through voltage, using AFM, allows us to extract κ. The bending rigidity of bilayer graphene membranes under ambient conditions was determined to be 35.5−15.0 +20.0 eV. Monolayers are shown to have significantly lower κ than bilayers.

13.
Phys Rev Lett ; 108(17): 173401, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22680862

RESUMO

Photoelectron angular distributions from both C(60) and C(70) were recorded for low laser intensity femtosecond and picosecond pulses. Rich structure is seen for electron kinetic energies that lie below the photon energy. Strong, broad peaks are observed for photoelectron energies corresponding to single-photon ionization of so-called superatom molecular orbitals (SAMOs). The very simple angular distributions measured for these peaks, the close similarity of the spectra observed from C(60) and C(70), and the comparison with time-dependent density functional theory provide strong support for the SAMO hypothesis.

15.
Nano Lett ; 11(9): 3569-75, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21848317

RESUMO

Novel field effect transistors with suspended graphene gates are demonstrated. By incorporating mechanical motion of the gate electrode, it is possible to improve the switching characteristics compared to a static gate, as shown by a combination of experimental measurements and numerical simulations. The mechanical motion of the graphene gate is confirmed by using atomic force microscopy to directly measure the electrostatic deflection. The device geometry investigated here can also provide a sensitive measurement technique for detecting high-frequency motion of suspended membranes as required, e.g., for mass sensing.


Assuntos
Grafite/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Condutividade Elétrica , Eletrodos , Microscopia de Força Atômica/métodos , Eletricidade Estática , Temperatura
16.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014709

RESUMO

Graphene oxides with different degrees of oxidation are prepared by controlling UV irradiation on graphene, and the charge transport and the evolution of the transport gap are investigated according to the extent of oxidation. With increasing oxygenous defect density nD, a transition from ballistic to diffusive conduction occurs at nD≃1012 cm-2 and the transport gap grows in proportion to nD. Considering the potential fluctuation related to the e-h puddle, the bandgap of graphene oxide is deduced to be Eg≃30nD(1012cm-2) meV. The temperature dependence of conductivity showed metal-insulator transitions at nD≃0.3×1012 cm-2, consistent with Ioffe-Regel criterion. For graphene oxides at nD≥4.9×1012 cm-2, analysis indicated charge transport occurred via 2D variable range hopping conduction between localized sp2 domain. Our work elucidates the transport mechanism at different extents of oxidation and supports the possibility of adjusting the bandgap with oxygen content.

17.
Nanomaterials (Basel) ; 12(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36364596

RESUMO

The recent report of a p-type graphene(Gr)/carbon-nanotube(CNT) barristor facilitates the application of graphene barristors in the fabrication of complementary logic devices. Here, a complementary inverter is presented that combines a p-type Gr/CNT barristor with a n-type Gr/MoS2 barristor, and its characteristics are reported. A sub-nW (~0.2 nW) low-power inverter is demonstrated with a moderate gain of 2.5 at an equivalent oxide thickness (EOT) of ~15 nm. Compared to inverters based on field-effect transistors, the sub-nW power consumption was achieved at a much larger EOT, which was attributed to the excellent switching characteristics of Gr barristors.

18.
Nanomaterials (Basel) ; 12(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234481

RESUMO

MoS2 nanoscrolls that have inner core radii of ∼250 nm are generated from MoS2 monolayers, and the optical and transport band gaps of the nanoscrolls are investigated. Photoluminescence spectroscopy reveals that a MoS2 monolayer, originally a direct gap semiconductor (∼1.85 eV (optical)), changes into an indirect gap semiconductor (∼1.6 eV) upon scrolling. The size of the indirect gap for the MoS2 nanoscroll is larger than that of a MoS2 bilayer (∼1.54 eV), implying a weaker interlayer interaction between concentric layers of the MoS2 nanoscroll compared to Bernal-stacked MoS2 few-layers. Transport measurements on MoS2 nanoscrolls incorporated into ambipolar ionic-liquid-gated transistors yielded a band gap of ∼1.9 eV. The difference between the transport and optical gaps indicates an exciton binding energy of 0.3 eV for the MoS2 nanoscrolls. The rolling up of 2D atomic layers into nanoscrolls introduces a new type of quasi-1D nanostructure and provides another way to modify the band gap of 2D materials.

19.
Sci Total Environ ; 809: 152195, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34890668

RESUMO

Pastures and rangelands are a dominant portion of global agricultural land and have the potential to sequester carbon (C) in soils, mitigating climate change. Management intensive grazing (MIG), or high density grazing with rotations through paddocks with long rest periods, has been highlighted as a method of enhancing soil C in pastures by increasing forage production. However, few studies have examined the soil C storage potential of pastures under MIG in the northeastern United States, where the dairy industry comprises a large portion of agricultural use and the regional agricultural economy. Here we present a 12-year study conducted in this region using a combination of field data and the denitrification and decomposition (DNDCv9.5) model to analyze changes in soil C and nitrogen (N) over time, and the climate impacts as they relate to soil carbon dioxide (CO2) and nitrous oxide (N2O) fluxes. Field measurements showed: (1) increases in soil C in grazed fields under MIG (P = 0.03) with no significant increase in hayed fields (P = 0.55); and (2) that the change in soil C was negatively correlated to initial soil C content (P = 0.006). Modeled simulations also showed fields that started with relatively less soil C had significant gains in C over the course of the study, with no significant change in fields with higher initial levels of soil C. Sensitivity analyses showed the physiochemical status of soils (i.e., soil C and clay content) had greater influence over C storage than the intensity of grazing. More extensive grazing methods showed very little change in soil C storage or CO2 and N2O fluxes with modeled continuous grazing trending towards declines in soil C. Our study highlights the importance of considering both initial system conditions as well as management when analyzing the potential for long-term soil C storage.


Assuntos
Sequestro de Carbono , Solo , Agricultura , Fazendas , Óxido Nitroso/análise , Estações do Ano
20.
Nanotechnology ; 20(38): 385710, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19713579

RESUMO

The electromechanical properties of arrays of vertically aligned multiwalled carbon nanotubes were studied in a parallel plate capacitor geometry. The electrostatic actuation was visualized using both optical microscopy and scanning electron microscopy, and highly reproducible behaviour was achieved for actuation voltages below the pull-in voltage. The walls of vertically aligned carbon nanotubes behave as solid cohesive units. The effective Young's modulus for the carbon nanotube arrays was determined by comparing the actuation results with the results of electrostatic simulations and was found to be exceptionally low, of the order of 1-10 MPa. The capacitance change and Q-factor were determined by measuring the frequency dependence of the radio-frequency transmission. Capacitance changes of over 20% and Q-factors in the range 100-10 were achieved for a frequency range of 0.2-1.5 GHz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA