Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 20(11): e3001867, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36445931

RESUMO

Parvoviruses (family Parvoviridae) are small DNA viruses that cause numerous diseases of medical, veterinary, and agricultural significance and have important applications in gene and anticancer therapy. DNA sequences derived from ancient parvoviruses are common in animal genomes and analysis of these endogenous parvoviral elements (EPVs) has demonstrated that the family, which includes twelve vertebrate-specific genera, arose in the distant evolutionary past. So far, however, such "paleovirological" analysis has only provided glimpses into the biology of ancient parvoviruses and their long-term evolutionary interactions with hosts. Here, we comprehensively map EPV diversity in 752 published vertebrate genomes, revealing defining aspects of ecology and evolution within individual parvovirus genera. We identify 364 distinct EPV sequences and show these represent approximately 200 unique germline incorporation events, involving at least five distinct parvovirus genera, which took place at points throughout the Cenozoic Era. We use the spatiotemporal and host range calibrations provided by these sequences to infer defining aspects of long-term evolution within individual parvovirus genera, including mammalian vicariance for genus Protoparvovirus, and interclass transmission for genus Dependoparvovirus. Moreover, our findings support a model of virus evolution in which the long-term cocirculation of multiple parvovirus genera in vertebrates reflects the adaptation of each viral genus to fill a distinct ecological niche. Our findings show that efforts to develop parvoviruses as therapeutic tools can be approached from a rational foundation based on comparative evolutionary analysis. To support this, we published our data in the form of an open, extensible, and cross-platform database designed to facilitate the wider utilisation of evolution-related domain knowledge in parvovirus research.


Assuntos
Parvovirus , Vertebrados , Animais , Vertebrados/genética , Ecologia , Aclimatação , Agricultura , Parvovirus/genética , Mamíferos
2.
Genome Res ; 31(7): 1280-1289, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34140313

RESUMO

Bisulfite sequencing detects 5mC and 5hmC at single-base resolution. However, bisulfite treatment damages DNA, which results in fragmentation, DNA loss, and biased sequencing data. To overcome these problems, enzymatic methyl-seq (EM-seq) was developed. This method detects 5mC and 5hmC using two sets of enzymatic reactions. In the first reaction, TET2 and T4-BGT convert 5mC and 5hmC into products that cannot be deaminated by APOBEC3A. In the second reaction, APOBEC3A deaminates unmodified cytosines by converting them to uracils. Therefore, these three enzymes enable the identification of 5mC and 5hmC. EM-seq libraries were compared with bisulfite-converted DNA, and each library type was ligated to Illumina adaptors before conversion. Libraries were made using NA12878 genomic DNA, cell-free DNA, and FFPE DNA over a range of DNA inputs. The 5mC and 5hmC detected in EM-seq libraries were similar to those of bisulfite libraries. However, libraries made using EM-seq outperformed bisulfite-converted libraries in all specific measures examined (coverage, duplication, sensitivity, etc.). EM-seq libraries displayed even GC distribution, better correlations across DNA inputs, increased numbers of CpGs within genomic features, and accuracy of cytosine methylation calls. EM-seq was effective using as little as 100 pg of DNA, and these libraries maintained the described advantages over bisulfite sequencing. EM-seq library construction, using challenging samples and lower DNA inputs, opens new avenues for research and clinical applications.

3.
Mol Ecol ; 33(15): e17449, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38967124

RESUMO

A refugial population of the endangered delta smelt (Hypomesus transpacificus) has been maintained at the Fish Conservation and Culture Laboratory (FCCL) at UC Davis since 2008. Despite intense genetic management, fitness differences between wild and cultured fish have been observed at the FCCL. To investigate the molecular underpinnings of hatchery domestication, we used whole-genome bisulfite sequencing to quantify epigenetic differences between wild and hatchery-origin delta smelt. Differentially methylated regions (DMRs) were identified from 104 individuals by comparing the methylation patterns in different generations of hatchery fish (G1, G2, G3) with their wild parents (G0). We discovered a total of 132 significant DMRs (p < .05) between G0 and G1, 132 significant DMRs between G0 and G2, and 201 significant DMRs between G0 and G3. Our results demonstrate substantial differences in methylation patterns emerged between the wild and hatchery-reared fish in the early generations in the hatchery, with a higher proportion of hypermethylated DMRs in hatchery-reared fish. The rearing environment was found to be a stronger predictor of individual clustering based on methylation patterns than family, sex or generation. Our study indicates a reinforcement of the epigenetic status with successive generations in the hatchery environment, as evidenced by an increase in methylation in hypermethylated DMRs and a decrease in methylation in hypomethylated DMRs over time. Lastly, our results demonstrated heterogeneity in inherited methylation pattern in families across generations. These insights highlight the long-term consequences of hatchery practices on the epigenetic landscape, potentially impacting wild fish populations.


Assuntos
Metilação de DNA , Epigênese Genética , Osmeriformes , Animais , Osmeriformes/genética , Masculino , Feminino , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção
4.
Mol Phylogenet Evol ; 199: 108159, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39029548

RESUMO

Gadopsis (Percichthyidae) is a freshwater genus distributed in south-eastern Australia, including Tasmania, and comprises two recognized species. Previous molecular phylogenetic investigations of the genus, mostly conducted in the pre-genomics era and reflecting a range of geographic and molecular sampling intensities, have supported the recognition of up to seven candidate species. Here we analyze a genome-wide SNP dataset that provides comprehensive geographic and genomic coverage of Gadopsis to produce a robust hypothesis of species boundaries and evolutionary relationships. We then leverage the SNP dataset to characterize relationships within candidate species that lack clear intraspecific phylogenetic relationships. We find further support for the seven previously identified candidate species of Gadopsis and evidence that the Bass Strait centered candidate species (SBA) originated from ancient hybridization. The SNP dataset permits a high degree of intraspecific resolution, providing improvements over previous studies, with numerous candidate species showing intraspecific divisions in phylogenetic analysis. Further population genetic analysis of the Murray-Darling candidate species (NMD) and SBA finds support for K = 6 and K = 7 genetic clusters, respectively. The SNP data generated for this study have diverse applications in natural resource management for these fishes of conservation concern.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Perciformes , Filogenia , Polimorfismo de Nucleotídeo Único , Animais , Perciformes/genética , Perciformes/classificação , Genética Populacional , Austrália
5.
Glob Chang Biol ; 30(1): e17066, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273563

RESUMO

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.


Assuntos
Ecossistema , Água Subterrânea , Biodiversidade , Água Doce , Poluição Ambiental
6.
Environ Microbiol ; 24(12): 6493-6509, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36156347

RESUMO

N2 -fixing heterocytous cyanobacteria are considered to play a minor role in sustaining coastal microbial mat communities developing under normal marine to hypersaline conditions. Here, we investigated microbial mats growing under different salinities from freshwater mats of Giblin River (Tasmania) to metahaline and hypersaline mats of Shark Bay (Western Australia). Analyses of genetic (rRNA and mRNA) and biological markers (heterocyte glycolipids) revealed an unexpectedly large diversity of heterocytous cyanobacteria in all the studied microbial mat communities. It was observed that the taxonomic distribution as well as abundance of cyanobacteria is strongly affected by salinity. Low salinity favoured the presence of heterocytous cyanobacteria in freshwater mats, while mats thriving in higher salinities mainly supported the growth unicellular and filamentous non-heterocytous genera. However, even though mRNA transcripts derived from heterocytous cyanobacteria were lower in Shark Bay (<6%) microbial mats, functional analyses revealed that these diazotrophs were transcribing a substantial proportion of the genes involved in biofilm formation and nitrogen fixation. Overall, our data reveal an unexpectedly high diversity of heterocytous cyanobacteria (e.g. Calothrix, Scytonema, Nodularia, Gloeotrichia, Stigonema, Fischerella and Chlorogloeopsis) that had yet to be described in metahaline and hypersaline microbial mats from Shark Bay and that they play a vital role in sustaining the ecosystem functioning of coastal-marine microbial mat systems.


Assuntos
Cianobactérias , Microbiota , Salinidade , Austrália , Cianobactérias/genética , Água Doce , RNA Mensageiro
7.
Plant Cell ; 31(7): 1466-1487, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31023841

RESUMO

The merging of distinct genomes, allopolyploidization, is a widespread phenomenon in plants. It generates adaptive potential through increased genetic diversity, but examples demonstrating its exploitation remain scarce. White clover (Trifolium repens) is a ubiquitous temperate allotetraploid forage crop derived from two European diploid progenitors confined to extreme coastal or alpine habitats. We sequenced and assembled the genomes and transcriptomes of this species complex to gain insight into the genesis of white clover and the consequences of allopolyploidization. Based on these data, we estimate that white clover originated ∼15,000 to 28,000 years ago during the last glaciation when alpine and coastal progenitors were likely colocated in glacial refugia. We found evidence of progenitor diversity carryover through multiple hybridization events and show that the progenitor subgenomes have retained integrity and gene expression activity as they traveled within white clover from their original confined habitats to a global presence. At the transcriptional level, we observed remarkably stable subgenome expression ratios across tissues. Among the few genes that show tissue-specific switching between homeologous gene copies, we found flavonoid biosynthesis genes strongly overrepresented, suggesting an adaptive role of some allopolyploidy-associated transcriptional changes. Our results highlight white clover as an example of allopolyploidy-facilitated niche expansion, where two progenitor genomes, adapted and confined to disparate and highly specialized habitats, expanded to a ubiquitous global presence after glaciation-associated allopolyploidization.


Assuntos
Genômica , Poliploidia , Trifolium/genética , Vias Biossintéticas/genética , Mapeamento Cromossômico , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Geografia , Hibridização Genética , Camada de Gelo , Fatores de Tempo
8.
J Hered ; 112(7): 614-625, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34420047

RESUMO

Genetic changes underlying adaptation vary greatly in terms of complexity and, within the same species, genetic responses to similar selective pressures may or may not be the same. We examine both complex (supergene) and simple (SNP) genetic variants occurring in populations of rainbow trout (Oncorhynchus mykiss) independently isolated from ocean access and compared them to each other and to an anadromous below-barrier population representing their ancestral source to search for signatures of both parallel and nonparallel adaptation. All landlocked populations displayed an increased frequency of a large inversion on chromosome Omy05, while 3 of the 4 populations exhibited elevated frequencies of another inversion located on chromosome Omy20. In addition, we identified numerous regions outside these 2 inversions that also show significant shifts in allele frequencies consistent with adaptive evolution. However, there was little concordance among above-barrier populations in these specific genomic regions under selection. In part, the lack of concordance appears to arise from ancestral autopolyploidy in rainbow trout that provides duplicate genomic regions of similar functional composition for selection to act upon. Thus, while selection acting on landlocked populations universally favors the resident ecotype, outside of the major chromosomal inversions, the resulting genetic changes are largely distinct among populations. Our results indicate that selection on standing genetic variation is likely the primary mode of rapid adaptation, and that both supergene complexes and individual loci contribute to adaptive evolution, further highlighting the diversity of adaptive genomic variation involved in complex phenotypic evolution.


Assuntos
Migração Animal , Oncorhynchus mykiss , Adaptação Fisiológica/genética , Animais , Ecótipo , Duplicação Gênica , Genoma , Oncorhynchus mykiss/genética
9.
Proc Natl Acad Sci U S A ; 115(2): E226-E235, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279407

RESUMO

Bacterial endosymbionts that provide nutrients to hosts often have genomes that are extremely stable in structure and gene content. In contrast, the genome of the endosymbiont Hodgkinia cicadicola has fractured into multiple distinct lineages in some species of the cicada genus Tettigades To better understand the frequency, timing, and outcomes of Hodgkinia lineage splitting throughout this cicada genus, we sampled cicadas over three field seasons in Chile and performed genomics and microscopy on representative samples. We found that a single ancestral Hodgkinia lineage has split at least six independent times in Tettigades over the last 4 million years, resulting in complexes of between two and six distinct Hodgkinia lineages per host. Individual genomes in these symbiotic complexes differ dramatically in relative abundance, genome size, organization, and gene content. Each Hodgkinia lineage retains a small set of core genes involved in genetic information processing, but the high level of gene loss experienced by all genomes suggests that extensive sharing of gene products among symbiont cells must occur. In total, Hodgkinia complexes that consist of multiple lineages encode nearly complete sets of genes present on the ancestral single lineage and presumably perform the same functions as symbionts that have not undergone splitting. However, differences in the timing of the splits, along with dissimilar gene loss patterns on the resulting genomes, have led to very different outcomes of lineage splitting in extant cicadas.


Assuntos
Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos/genética , Hemípteros/microbiologia , Simbiose/fisiologia , Animais , Evolução Biológica , Chile , Variação Genética , Genoma Bacteriano , Filogenia
10.
J Fish Biol ; 97(1): 293-297, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32333611

RESUMO

The recessus orbitalis is an accessory organ of flatfishes functioning in the protrusion of the eyes. This character, along with cranial asymmetry and a forward insertion of the dorsal fin, have been considered synapomorphies for the Pleuronectiformes. New dissections and examination of images taken in the wild show that the recessus orbitalis is present in all representatives of Pleuronectoidei examined but is absent in the single species of Psettoidei dissected. Psettoidei, the most primitive pleuronectiform lineage, contains three recognized species; thus, the absence of the recessus orbitalis in this whole lineage is unclear without further dissections. Ancestral character estimation at the family level for the recessus orbitalis indicates that the recessus orbitalis was likely absent in the common ancestor of Pleuronectiformes but was most likely present in the common ancestor of the Pleuronectoidei. Given that so few species of flatfishes have been assessed for the recessus orbitalis to date, additional characterization of the distribution of the recessus orbitalis across flatfishes will further inform what states this character may have and if it is a synapomorphy of Pleuronectiformes or simply a derived character state of Pleuronectoidei.


Assuntos
Estruturas Animais/anatomia & histologia , Linguados/anatomia & histologia , Crânio/anatomia & histologia , Animais , Filogenia
11.
J Hered ; 110(2): 247-256, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30590568

RESUMO

Mitochondrial genomes can provide valuable information on the biology and evolutionary histories of their host organisms. Here, we present and characterize the complete coding regions of 107 mitochondrial genomes (mitogenomes) of cicadas (Insecta: Hemiptera: Auchenorrhyncha: Cicadoidea), representing 31 genera, 61 species, and 83 populations. We show that all cicada mitogenomes retain the organization and gene contents thought to be ancestral in insects, with some variability among cicada clades in the length of a region between the genes nad2 and cox1, which encodes 3 tRNAs. Phylogenetic analyses using these mitogenomes recapitulate a recent 5-gene classification of cicadas into families and subfamilies, but also identify a species that falls outside of the established taxonomic framework. While protein-coding genes are under strong purifying selection, tests of relative evolutionary rates reveal significant variation in evolutionary rates across taxa, highlighting the dynamic nature of mitochondrial genome evolution in cicadas. These data will serve as a useful reference for future research into the systematics, ecology, and evolution of the superfamily Cicadoidea.


Assuntos
Genoma Mitocondrial , Genômica , Hemípteros/genética , Animais , Anticódon , DNA Espaçador Ribossômico , Ordem dos Genes , Variação Genética , Genômica/métodos , Genótipo , Região de Controle de Locus Gênico , Filogenia , RNA de Transferência/genética , Simbiose
12.
Mol Phylogenet Evol ; 124: 172-180, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29526805

RESUMO

The Pelagia is a recently delineated group of fishes, comprising fifteen families formerly placed in six perciform suborders. The Pelagia was lately recognized as it encompasses huge morphological diversity and only in the last few years have large-scale molecular phylogenetic studies been undertaken that could unite such morphologically disparate lineages. Due to the recent erection of Pelagia, the composition of the taxon is not entirely certain. Five families of the former perciform suborder Stromateoidei have been identified as pelagians. However, the sixth stromateoid subfamily Amarsipidae is a rare monotypic family that has distinctive meristic and morphological characteristics from that of other stromateoids such as the lack of a pharyngeal sac. We examine molecular data generated from the sole species in Amarsipidae, Amarsipus carlsbergi, and demonstrate that it is clearly nested within Pelagia. As with two previous studies that have the breadth of sampling to evaluate pelagian intra-relationships, we find high support for monophyly of most family-level taxonomic units but statistical support for early-branching nodes in the pelagian tree is very low. We conduct the first analyses of Pelagia incorporating the multispecies coalescent and are limited by a high degree of missing loci, or, incomplete taxon sampling. The high degree of missing data across a complete sampling of pelagian lineages along with the deep time scale and rapid radiation of the lineage contribute to poor resolution of early-branching relationships within Pelagia that cannot be resolved with current data sets. Currently available data are either mitochondrial genomes or a super matrix of relatively few loci with a high degree of missing data. A new and independent dataset of numerous phylogenetic loci derived from high-throughput sequencing technology may reduce uncertainty within the Pelagia and provide insights into this adaptive radiation.


Assuntos
Peixes/classificação , Peixes/genética , Loci Gênicos , Filogenia , Animais , Sequência de Bases , Funções Verossimilhança , Alinhamento de Sequência , Análise de Sequência de DNA
13.
Proc Natl Acad Sci U S A ; 112(33): 10192-9, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26286984

RESUMO

Comparative genomics from mitochondria, plastids, and mutualistic endosymbiotic bacteria has shown that the stable establishment of a bacterium in a host cell results in genome reduction. Although many highly reduced genomes from endosymbiotic bacteria are stable in gene content and genome structure, organelle genomes are sometimes characterized by dramatic structural diversity. Previous results from Candidatus Hodgkinia cicadicola, an endosymbiont of cicadas, revealed that some lineages of this bacterium had split into two new cytologically distinct yet genetically interdependent species. It was hypothesized that the long life cycle of cicadas in part enabled this unusual lineage-splitting event. Here we test this hypothesis by investigating the structure of the Ca. Hodgkinia genome in one of the longest-lived cicadas, Magicicada tredecim. We show that the Ca. Hodgkinia genome from M. tredecim has fragmented into multiple new chromosomes or genomes, with at least some remaining partitioned into discrete cells. We also show that this lineage-splitting process has resulted in a complex of Ca. Hodgkinia genomes that are 1.1-Mb pairs in length when considered together, an almost 10-fold increase in size from the hypothetical single-genome ancestor. These results parallel some examples of genome fragmentation and expansion in organelles, although the mechanisms that give rise to these extreme genome instabilities are likely different.


Assuntos
Alphaproteobacteria/genética , Genoma Bacteriano , Hemípteros/microbiologia , Simbiose , Animais , Evolução Molecular , Feminino , Genoma Mitocondrial , Genômica , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Fases de Leitura Aberta , Organelas , Filogenia , Plastídeos/genética , Ribossomos/metabolismo , Especificidade da Espécie
14.
Mol Phylogenet Evol ; 109: 337-342, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28185947

RESUMO

Fishes are widely diverse in shape and body size and can quite rapidly undergo these changes. Consequently, some relationships are not clearly resolved with morphological analyses. In the case of fishes of small body size, informative characteristics can be absent due to simplification of body structures. The Parabrotulidae, a small family of diminutive body size consisting of two genera and three species has most recently been classified as either a perciform within the suborder Zoarcoidei or an ophidiiform. Classification of parabrotulids as ophidiiforms has become predominant; however the Parabrotulidae has not yet been investigated in a molecular phylogenetic framework. We examine molecular data from ten genetic loci to more specifically place the Parabrotulidae within the fish tree of life. In a hypothesis testing framework, the Parabrotulidae as a zoarcoid taxon is rejected. Previous identity with zoarcoids due to the one fin ray for each vertebra being present, a characteristic for the Zoarcidae, appears to be an example of convergence. Our results indicate that parabrotulids are viviparous ophidiiforms within the family Bythitidae.


Assuntos
Evolução Biológica , Peixes/classificação , Animais , Tamanho Corporal , Feminino , Peixes/genética , Masculino , Tipagem Molecular , Perciformes/classificação , Perciformes/genética , Filogenia , Análise de Sequência de DNA
15.
Am Nat ; 188(6): 602-614, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27860510

RESUMO

Polyploidy-the increase in the number of whole chromosome sets-is an important evolutionary force in eukaryotes. Polyploidy is well recognized throughout the evolutionary history of plants and animals, where several ancient events have been hypothesized to be drivers of major evolutionary radiations. However, fungi provide a striking contrast: while numerous recent polyploids have been documented, ancient fungal polyploidy is virtually unknown. We present a survey of known fungal polyploids that confirms the absence of ancient fungal polyploidy events. Three hypotheses may explain this finding. First, ancient fungal polyploids are indeed rare, with unique aspects of fungal biology providing similar benefits without genome duplication. Second, fungal polyploids are not successful in the long term, leading to few extant species derived from ancient polyploidy events. Third, ancient fungal polyploids are difficult to detect, causing the real contribution of polyploidy to fungal evolution to be underappreciated. We consider each of these hypotheses in turn and propose that failure to detect ancient events is the most likely reason for the lack of observed ancient fungal polyploids. We examine whether existing data can provide evidence for previously unrecognized ancient fungal polyploidy events but discover that current resources are too limited. We contend that establishing whether unrecognized ancient fungal polyploidy events exist is important to ascertain whether polyploidy has played a key role in the evolution of the extensive complexity and diversity observed in fungi today and, thus, whether polyploidy is a driver of evolutionary diversifications across eukaryotes. Therefore, we conclude by suggesting ways to test the hypothesis that there are unrecognized polyploidy events in the deep evolutionary history of the fungi.


Assuntos
Evolução Molecular , Fungos/genética , Poliploidia , Evolução Biológica
16.
BMC Bioinformatics ; 16: 8, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25592117

RESUMO

BACKGROUND: Forming a new species through the merger of two or more divergent parent species is increasingly seen as a key phenomenon in the evolution of many biological systems. However, little is known about how expression of parental gene copies (homeologs) responds following genome merger. High throughput RNA sequencing now makes this analysis technically feasible, but tools to determine homeolog expression are still in their infancy. RESULTS: Here we present HyLiTE - a single-step analysis to obtain tables of homeolog expression in a hybrid or allopolyploid and its parent species directly from raw mRNA sequence files. By implementing on-the-fly detection of diagnostic parental polymorphisms, HyLiTE can perform SNP calling and read classification simultaneously, thus allowing HyLiTE to be run as parallelized code. HyLiTE accommodates any number of parent species, multiple data sources (including genomic DNA reads to improve SNP detection), and implements a statistical framework optimized for genes with low to moderate expression. CONCLUSIONS: HyLiTE is a flexible and easy-to-use program designed for bench biologists to explore patterns of gene expression following genome merger. HyLiTE offers practical advantages over manual methods and existing programs, has been designed to accommodate a wide range of genome merger systems, can identify SNPs that arose following genome merger, and offers accurate performance on non-model organisms.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Poliploidia , Análise de Sequência de DNA/métodos , Software , Animais , Fungos/genética , Carpa Dourada/genética , Gossypium/genética , Hibridização Genética , Polimorfismo de Nucleotídeo Único/genética
17.
BMC Evol Biol ; 15: 144, 2015 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-26187279

RESUMO

BACKGROUND: Pleistocene climatic instability had profound and diverse effects on the distribution and abundance of Arctic organisms revealed by variation in phylogeographic patterns documented in extant Arctic populations. To better understand the effects of geography and paleoclimate on Beringian freshwater fishes, we examined genetic variability in the genus Dallia (blackfish: Esociformes: Esocidae). The genus Dallia groups between one and three nominal species of small, cold- and hypoxia-tolerant freshwater fishes restricted entirely in distribution to Beringia from the Yukon River basin near Fairbanks, Alaska westward including the Kuskokwim River basin and low-lying areas of Western Alaska to the Amguema River on the north side of the Chukotka Peninsula and Mechigmen Bay on the south side of the Chukotka Peninsula. The genus has a non-continuous distribution divided by the Bering Strait and the Brooks Range. We examined the distribution of genetic variation across this range to determine the number and location of potential sub-refugia within the greater Beringian refugium as well as the roles of the Bering land bridge, Brooks Range, and large rivers within Beringia in shaping the current distribution of populations of Dallia. Our analyses were based on DNA sequence data from two nuclear gene introns (S7 and RAG1) and two mitochondrial genome fragments from nineteen sampling locations. These data were examined under genetic clustering and coalescent frameworks to identify sub-refugia within the greater Beringia refugium and to infer the demographic history of different populations of Dallia. RESULTS: We identified up to five distinct genetic clusters of Dallia. Four of these genetic clusters are present in Alaska: (1) Arctic Coastal Plain genetic cluster found north of the Brooks Range, (2) interior Alaska genetic cluster placed in upstream locations in the Kuskokwim and Yukon river basins, (3) a genetic cluster found on the Seward Peninsula, and (4) a coastal Alaska genetic cluster encompassing downstream Kuskokwim River and Yukon River basin sample locations and samples from Southwest Alaska not in either of these drainages. The Chukotka samples are assigned to their own genetic cluster (5) similar to the coastal Alaska genetic cluster. The clustering and ordination analyses implemented in Discriminant Analysis of Principal Components (DAPC) and STRUCTURE showed mostly concordant groupings and a high degree of differentiation among groups. The groups of sampling locations identified as genetic clusters correspond to geographic areas divided by likely biogeographic barriers including the Brooks Range and the Bering Strait. Estimates of sequence diversity (θ) are highest in the Yukon River and Kuskokwim River drainages near the Bering Sea. We also infer asymmetric migration rates between genetic clusters. The isolation of Dallia on the Arctic Coastal Plain of Alaska is associated with very low estimated migration rates between the coastal Alaska genetic cluster and the Arctic Coastal Plain genetic cluster. CONCLUSIONS: Our results support a scenario with multiple aquatic sub-refugia in Beringia during the Pleistocene and the preservation of that structure in extant populations of Dallia. An inferred historical presence of Dallia across the Bering land bridge explains the similarities in the genetic composition of Dallia in West Beringia and western coastal Alaska. In contrast, historic and contemporary isolation across the Brooks Range shaped the distinctiveness of present day Arctic Coastal Plain Dallia. Overall this study uncovered a high degree of genetic structuring among populations of Dallia supporting the idea of multiple Beringian sub-refugia during the Pleistocene and which appears to be maintained to the present due to the strictly freshwater nature and low dispersal ability of this genus.


Assuntos
Peixes/classificação , Peixes/genética , Especiação Genética , Alaska , Animais , Regiões Árticas , Evolução Biológica , Mudança Climática , DNA Mitocondrial/genética , Fósseis , Água Doce , Variação Genética , Dados de Sequência Molecular , Filogenia , Filogeografia , Refúgio de Vida Selvagem , Análise de Sequência de DNA
18.
BMC Plant Biol ; 15: 78, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25848894

RESUMO

BACKGROUND: The species of Utricularia attract attention not only owing to their carnivorous lifestyle, but also due to an elevated substitution rate and a dynamic evolution of genome size leading to its dramatic reduction. To better understand the evolutionary dynamics of genome size and content as well as the great physiological plasticity in this mostly aquatic carnivorous genus, we analyzed the transcriptome of Utricularia vulgaris, a temperate species with well characterized physiology and ecology. We compared its transcriptome, namely gene content and overall transcript profile, with a previously described transcriptome of Utricularia gibba, a congener possessing one of the smallest angiosperm genomes. RESULTS: We sequenced a normalized cDNA library prepared from total RNA extracted from shoots of U. vulgaris including leaves and traps, cultivated under sterile or outdoor conditions. 454 pyrosequencing resulted in more than 1,400,000 reads which were assembled into 41,407 isotigs in 19,522 isogroups. We observed high transcript variation in several isogroups explained by multiple loci and/or alternative splicing. The comparison of U. vulgaris and U. gibba transcriptomes revealed a similar distribution of GO categories among expressed genes, despite the differences in transcriptome preparation. We also found a strong correspondence in the presence or absence of root-associated genes between the U. vulgaris transcriptome and U. gibba genome, which indicated that the loss of some root-specific genes had occurred before the divergence of the two rootless species. CONCLUSIONS: The species-rich genus Utricularia offers a unique opportunity to study adaptations related to the environment and carnivorous habit and also evolutionary processes responsible for considerable genome reduction. We show that a transcriptome may approximate the genome for gene content or gene duplication estimation. Our study is the first comparison of two global sequence data sets in Utricularia.


Assuntos
Processamento Alternativo/genética , Genoma de Planta , Magnoliopsida/genética , Homologia de Sequência do Ácido Nucleico , Transcriptoma/genética , Primers do DNA/metabolismo , Ontologia Genética , Genes de Plantas , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Filogenia , Raízes de Plantas/genética , Reação em Cadeia da Polimerase
19.
Mol Phylogenet Evol ; 75: 149-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24582736

RESUMO

Betancur-R and Ortí (2014) offer a criticism of our recent examination of the monophyly of extant flatfishes (Pleuronectiformes; Campbell et al., 2013). We welcome this opportunity to examine and respond to the main issues presented in Betancur-R and Ortí (2014). Briefly, this debate centers on the question of whether or not analyses of the available evidence support a stable and confident conclusion regarding a sister group relationship between the two recognized pleuronectiform suborders: Psettodoidei (four species) and Pleuronectoidei (>700 species). In Campbell et al. (2013), we reported results based on sequences from six nuclear genes compatible with monophyly of Pleuronectoidei but not with that of Pleuronectiformes. In our analyses, the most closely related percomorph family to the Pleuronectoidei was resolved to be the Centropomidae. In Campbell et al. (2013), we also provided a critical review of the morphological evidence in favor flatfish monophyly showing that this evidence requires a careful re-examination where it concerns psettodoids. Here we present our perspective on the issues raised in Betancur-R and Ortí (2014).


Assuntos
Evolução Molecular , Linguados/classificação , Linguados/genética , Filogenia , Animais
20.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38934850

RESUMO

Advancements in genome sequencing and assembly techniques have increased the documentation of structural variants in wild organisms. Of these variants, chromosomal inversions are especially prominent due to their large size and active recombination suppression between alternative homokaryotypes. This suppression enables the 2 forms of the inversion to be maintained and allows the preservation of locally adapted alleles. The Barramundi Perch (BP; Lates calcarifer) is a widespread species complex with 3 main genetic lineages located in the biogeographic regions of Australia and New Guinea (AUS + NG), Southeast Asia (SEA), and the Indian Subcontinent (IND). BP are typically considered to be a protandrous sequential hermaphrodite species that exhibits catadromy. Freshwater occupancy and intraspecific variation in life history (e.g. partially migratory populations) exist and provide opportunities for strongly divergent selection associated with, for example, salinity tolerance, swimming ability, and marine dispersal. Herein, we utilize genomic data generated from all 3 genetic lineages to identify and describe 3 polymorphic candidate chromosomal inversions. These candidate chromosomal inversions appear to be fixed for ancestral variants in the IND lineage and for inverted versions in the AUS + NG lineage and exhibit variation in all 3 inversions in the SEA lineage. BP have a diverse portfolio of life history options that includes migratory strategy as well as sexual system (i.e. hermaphroditism and gonochorism). We propose that the some of the life history variabilities observed in BP may be linked to inversions and, in doing so, we present genetic data that might be useful in enhancing aquaculture production and population management.


Assuntos
Inversão Cromossômica , Especiação Genética , Percas , Animais , Percas/genética , Variação Estrutural do Genoma , Adaptação Fisiológica/genética , Genoma , Filogenia , Genômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA