RESUMO
Prostate cancer is characterized by considerable geo-ethnic disparity. African ancestry is a significant risk factor, with mortality rates across sub-Saharan Africa of 2.7-fold higher than global averages1. The contributing genetic and non-genetic factors, and associated mutational processes, are unknown2,3. Here, through whole-genome sequencing of treatment-naive prostate cancer samples from 183 ancestrally (African versus European) and globally distinct patients, we generate a large cancer genomics resource for sub-Saharan Africa, identifying around 2 million somatic variants. Significant African-ancestry-specific findings include an elevated tumour mutational burden, increased percentage of genome alteration, a greater number of predicted damaging mutations and a higher total of mutational signatures, and the driver genes NCOA2, STK19, DDX11L1, PCAT1 and SETBP1. Examining all somatic mutational types, we describe a molecular taxonomy for prostate cancer differentiated by ancestry and defined as global mutational subtypes (GMS). By further including Chinese Asian data, we confirm that GMS-B (copy-number gain) and GMS-D (mutationally noisy) are specific to African populations, GMS-A (mutationally quiet) is universal (all ethnicities) and the African-European-restricted subtype GMS-C (copy-number losses) predicts poor clinical outcomes. In addition to the clinical benefit of including individuals of African ancestry, our GMS subtypes reveal different evolutionary trajectories and mutational processes suggesting that both common genetic and environmental factors contribute to the disparity between ethnicities. Analogous to gene-environment interaction-defined here as a different effect of an environmental surrounding in people with different ancestries or vice versa-we anticipate that GMS subtypes act as a proxy for intrinsic and extrinsic mutational processes in cancers, promoting global inclusion in landmark studies.
Assuntos
População Negra , Neoplasias da Próstata , África/etnologia , África Subsaariana/etnologia , Povo Asiático/genética , População Negra/genética , Proteínas de Transporte/genética , China/etnologia , Etnicidade/genética , Europa (Continente)/etnologia , Humanos , Masculino , Mutação , Proteínas Nucleares/genética , Coativador 2 de Receptor Nuclear/genética , Neoplasias da Próstata/genética , RNA Helicases/genética , RNA Longo não Codificante/genéticaRESUMO
Potato tuber formation is a secondary developmental programme by which cells in the subapical stolon region divide and radially expand to further differentiate into starch-accumulating parenchyma. Although some details of the molecular pathway that signals tuberisation are known, important gaps in our knowledge persist. Here, the role of a member of the TERMINAL FLOWER 1/CENTRORADIALIS gene family (termed StCEN) in the negative control of tuberisation is demonstrated for what is thought to be the first time. It is shown that reduced expression of StCEN accelerates tuber formation whereas transgenic lines overexpressing this gene display delayed tuberisation and reduced tuber yield. Protein-protein interaction studies (yeast two-hybrid and bimolecular fluorescence complementation) demonstrate that StCEN binds components of the recently described tuberigen activation complex. Using transient transactivation assays, we show that the StSP6A tuberisation signal is an activation target of the tuberigen activation complex, and that co-expression of StCEN blocks activation of the StSP6A gene by StFD-Like-1. Transcriptomic analysis of transgenic lines misexpressing StCEN identifies early transcriptional events in tuber formation. These results demonstrate that StCEN suppresses tuberisation by directly antagonising the function of StSP6A in stolons, identifying StCEN as a breeding marker to improve tuber initiation and yield through the selection of genotypes with reduced StCEN expression.
Assuntos
Proteínas de Plantas/fisiologia , Tubérculos/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimento , Genes de Plantas , Proteínas de Plantas/metabolismo , Tubérculos/metabolismo , Plantas Geneticamente Modificadas , Solanum tuberosum/metabolismo , TranscriptomaRESUMO
For many potato cultivars, tuber yield is optimal at average daytime temperatures in the range 14-22 °C. Above this range, tuber yield is reduced for most cultivars. We previously reported that moderately elevated temperature increases steady-state expression of the core circadian clock gene TIMING OF CAB EXPRESSION 1 (StTOC1) in developing tubers, whereas expression of the StSP6A tuberization signal is reduced, along with tuber yield. In this study we provide evidence that StTOC1 links environmental signalling with potato tuberization by suppressing StSP6A autoactivation in the stolons. We show that transgenic lines silenced in StTOC1 expression exhibit enhanced StSP6A transcript levels and changes in gene expression in developing tubers that are indicative of an elevated sink strength. Nodal cuttings of StTOC1 antisense lines displayed increased tuber yields at moderately elevated temperatures, whereas tuber yield and StSP6A expression were reduced in StTOC1 overexpressor lines. Here we identify a number of StTOC1 binding partners and demonstrate that suppression of StSP6A expression is independent of StTOC1 complex formation with the potato homolog StPIF3. Down-regulation of StTOC1 thus provides a strategy to mitigate the effects of elevated temperature on tuber yield.
Assuntos
Proteínas de Plantas/metabolismo , Tubérculos/fisiologia , Solanum tuberosum/fisiologia , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Temperatura Alta , Proteínas de Plantas/genética , Tubérculos/genética , Solanum tuberosum/genética , TemperaturaRESUMO
To produce commercially valuable ketocarotenoids in Solanum tuberosum, the 4, 4' ß-oxygenase (crtW) and 3, 3' ß-hydroxylase (crtZ) genes from Brevundimonas spp. have been expressed in the plant host under constitutive transcriptional control. The CRTW and CRTZ enzymes are capable of modifying endogenous plant carotenoids to form a range of hydroxylated and ketolated derivatives. The host (cv. Désirée) produced significant levels of nonendogenous carotenoid products in all tissues, but at the apparent expense of the economically critical metabolite, starch. Carotenoid levels increased in both wild-type and transgenic tubers following cold storage; however, stability during heat processing varied between compounds. Subcellular fractionation of leaf tissues revealed the presence of ketocarotenoids in thylakoid membranes, but not predominantly in the photosynthetic complexes. A dramatic increase in the carotenoid content of plastoglobuli was determined. These findings were corroborated by microscopic analysis of chloroplasts. In tuber tissues, esterified carotenoids, representing 13% of the total pigment found in wild-type extracts, were sequestered in plastoglobuli. In the transgenic tubers, this proportion increased to 45%, with esterified nonendogenous carotenoids in place of endogenous compounds. Conversely, nonesterified carotenoids in both wild-type and transgenic tuber tissues were associated with amyloplast membranes and starch granules.
Assuntos
Vias Biossintéticas , Carotenoides/biossíntese , Engenharia Metabólica/métodos , Solanum tuberosum/metabolismo , Carotenoides/química , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Análise Discriminante , Genes de Plantas , Fenótipo , Fotossíntese , Pigmentação/genética , Folhas de Planta/metabolismo , Tubérculos/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Plastídeos/ultraestrutura , Preservação Biológica , Solanum tuberosum/genética , Amido/metabolismo , Transformação Genética , Xantofilas/biossíntese , Xantofilas/químicaRESUMO
KEY MESSAGE: Genome-wide QTL analysis of potato tuber carotenoid content was investigated in populations of Solanum tuberosum Group Phureja that segregate for flesh colour, revealing a novel major QTL on chromosome 9. The carotenoid content of edible plant storage organs is a key nutritional and quality trait. Although the structural genes that encode the biosynthetic enzymes are well characterised, much less is known about the factors that determine overall storage organ content. In this study, genome-wide QTL mapping, in concert with an efficient 'genetical genomics' analysis using bulked samples, has been employed to investigate the genetic architecture of potato tuber carotenoid content. Two diploid populations of Solanum tuberosum Group Phureja were genotyped (AFLP, SSR and DArT markers) and analysed for their tuber carotenoid content over two growing seasons. Common to both populations were QTL that explained relatively small proportions of the variation in constituent carotenoids and a major QTL on chromosome 3 explaining up to 71 % of the variation in carotenoid content. In one of the populations (01H15), a second major carotenoid QTL was identified on chromosome 9, explaining up to 20 % of the phenotypic variation. Whereas the major chromosome 3 QTL was likely to be due to an allele of a gene encoding ß-carotene hydroxylase, no known carotenoid biosynthetic genes are located in the vicinity of the chromosome 9 QTL. A unique expression profiling strategy using phenotypically distinct bulks comprised individuals with similar carotenoid content provided further support for the QTL mapping to chromosome 9. This study shows the potential of using the potato genome sequence to link genetic maps to data arising from eQTL approaches to enhance the discovery of candidate genes underlying QTLs.
Assuntos
Carotenoides/química , Tubérculos/química , Locos de Características Quantitativas , Solanum tuberosum/genética , Transcriptoma , Mapeamento Cromossômico , Cromossomos de Plantas , Genótipo , Oxigenases de Função Mista/genética , Solanum tuberosum/químicaRESUMO
· Strigolactones (SLs) are a class of phytohormones controlling shoot branching. In potato (Solanum tuberosum), tubers develop from underground stolons, diageotropic stems which originate from basal stem nodes. As the degree of stolon branching influences the number and size distribution of tubers, it was considered timely to investigate the effects of SL production on potato development and tuber life cycle. · Transgenic potato plants were generated in which the CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) gene, key in the SL biosynthetic pathway, was silenced by RNA interference (RNAi). · The resulting CCD8-RNAi potato plants showed significantly more lateral and main branches than control plants, reduced stolon formation, together with a dwarfing phenotype and a lack of flowering in the most severely affected lines. New tubers were formed from sessile buds of the mother tubers. The apical buds of newly formed transgenic tubers grew out as shoots when exposed to light. In addition, we found that CCD8 transcript levels were rapidly downregulated in tuber buds by the application of sprout-inducing treatments. · These results suggest that SLs could have an effect, solely or in combination with other phytohormones, in the morphology of potato plants and also in controlling stolon development and maintaining tuber dormancy.
Assuntos
Proteínas de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/genética , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Compostos de Benzil/farmacologia , Carotenoides/metabolismo , Clorofila/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Giberelinas/farmacologia , Lactonas/metabolismo , Lactonas/farmacologia , Fenótipo , Dormência de Plantas/efeitos dos fármacos , Dormência de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Tubérculos/efeitos dos fármacos , Purinas/farmacologia , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimentoRESUMO
African ancestry is a significant risk factor for prostate cancer and advanced disease. Yet, genetic studies have largely been conducted outside the context of Sub-Saharan Africa, identifying 278 common risk variants contributing to a multiethnic polygenic risk score, with rare variants focused on a panel of roughly 20 pathogenic genes. Based on this knowledge, we are unable to determine polygenic risk or differentiate prostate cancer status interrogating whole genome data for 113 Black South African men. To further assess for potentially functional common and rare variant associations, here we interrogate 247,780 exomic variants for 798 Black South African men using a case versus control or aggressive versus non-aggressive study design. Notable genes of interest include HCP5, RFX6 and H3C1 for risk, and MKI67 and KLF5 for aggressive disease. Our study highlights the need for further inclusion across the African diaspora to establish African-relevant risk models aimed at reducing prostate cancer health disparities.
Assuntos
Predisposição Genética para Doença , Neoplasias da Próstata , Humanos , Masculino , População Negra/genética , Neoplasias da Próstata/patologia , Fatores de RiscoRESUMO
Previously, we developed and applied a glasshouse screen for potato tuber yield under heat stress and identified a candidate gene (HSc70) for heat tolerance by genetic analysis of a diploid potato population. Specific allelic variants were expressed at high levels on exposure to moderately elevated temperature due to variations in gene promoter sequence. In this study, we aimed to confirm the results from the glasshouse screen in field trials conducted over several seasons and locations including those in Kenya, Malawi and the UK. We extend our understanding of the HSc70 gene and demonstrate that expression level of HSc70 correlates with tolerance to heat stress in a wide range of wild potato relatives. The physiological basis of the protective effect of HSc70 was explored and we show that genotypes carrying the highly expressed HSc70 A2 allele are protected against photooxidative damage to PSII induced by abiotic stresses. Overall, we show the potential of HSc70 alleles for breeding resilient potato genotypes for multiple environments.
RESUMO
Prostate cancer (PCa) is a significant health burden in Sub-Saharan Africa, with mortality rates loosely linked to African ancestry. Yet studies aimed at identifying contributing risk factors are lacking within the continent and as such exclude for significant ancestral diversity. Here, we investigate a series of epidemiological demographic and lifestyle risk factors for 1387 men recruited as part of the multi-ethnic Southern African Prostate Cancer Study (SAPCS). We found poverty to be a decisive factor for disease grade and age at diagnosis, with other notably significant PCa associated risk factors including sexually transmitted diseases, erectile dysfunction, gynaecomastia, and vertex or complete pattern balding. Aligned with African American data, Black ethnicity showed significant risk for PCa diagnosis (OR = 1.44, 95% CI 1.05-2.00), and aggressive disease presentation (ISUP ≥ 4: OR = 2.25, 95% CI 1.49-3.40). New to this study, we demonstrate African ancestral population substructure associated PCa disparity, observing increased risk for advanced disease for the southern African Tsonga people (ISUP ≥ 4: OR = 3.43, 95% CI 1.62-7.27). Conversely, South African Coloured were less likely to be diagnosed with aggressive disease overall (ISUP ≥ 3: OR = 0.38, 95% 0.17-0.85). Understanding the basis for PCa health disparities calls for African inclusion, however, lack of available data has limited the power to begin discussions. Here, focusing on arguably the largest study of its kind for the African continent, we draw attention to the contribution of within African ancestral diversity as a contributing factor to PCa health disparities within the genetically diverse region of southern Africa.
Assuntos
População Negra , Neoplasias da Próstata , Humanos , Masculino , Próstata , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/genética , Fatores de Risco , África do SulRESUMO
The factors that regulate storage organ carotenoid content remain to be fully elucidated, despite the nutritional and economic importance of this class of compound. Recent findings suggest that carotenoid pool size is determined, at least in part, by the activity of carotenoid cleavage dioxygenases. The aim of this study was to investigate whether Carotenoid Cleavage Dioxygenase4 (CCD4) activity affects potato (Solanum tuberosum) tuber carotenoid content. Microarray analysis revealed elevated expression of the potato CCD4 gene in mature tubers from white-fleshed cultivars compared with higher carotenoid yellow-fleshed tubers. The expression level of the potato CCD4 gene was down-regulated using an RNA interference (RNAi) approach in stable transgenic lines. Down-regulation in tubers resulted in an increased carotenoid content, 2- to 5-fold higher than in control plants. The increase in carotenoid content was mainly due to elevated violaxanthin content, implying that this carotenoid may act as the in vivo substrate. Although transcript level was also reduced in plant organs other than tubers, such as leaves, stems, and roots , there was no change in carotenoid content in these organs. However, carotenoid levels were elevated in flower petals from RNAi lines. As well as changes in tuber carotenoid content, tubers from RNAi lines exhibited phenotypes such as heat sprouting, formation of chain tubers, and an elongated shape. These results suggest that the product of the CCD4 reaction may be an important factor in tuber heat responses.
Assuntos
Carotenoides/análise , Proteínas de Plantas/metabolismo , Solanum tuberosum/enzimologia , Ácido Abscísico/análise , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Tubérculos/enzimologia , Tubérculos/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Interferência de RNA , RNA de Plantas/genética , Solanum tuberosum/genéticaRESUMO
Potato is a major global crop that has an important role to play in food security, reducing poverty and improving human nutrition. Productivity in potato however is limited in many environments by its sensitivity to abiotic stresses such as elevated temperature, drought, frost, and salinity. In this chapter we focus on the effects of elevated temperature on potato yields as high temperature is the most important uncontrollable factor affecting growth and yield of potato. We describe some of the physiological impacts of elevated temperature and review recent findings about response mechanisms. We describe genetic approaches that could be used to identify allelic variants of genes that may be useful to breed for increased climate resilience, an approach that could be deployed with recent advances in potato breeding.
Assuntos
Solanum tuberosum , Secas , Temperatura Alta , Salinidade , Solanum tuberosum/genética , Estresse FisiológicoRESUMO
Potato production is often constrained by abiotic stresses such as drought and high temperatures which are often present in combination. In the present work, we aimed to identify key mechanisms and processes underlying single and combined abiotic stress tolerance by comparative analysis of tolerant and susceptible cultivars. Physiological data indicated that the cultivars Desiree and Unica were stress tolerant while Agria and Russett Burbank were stress susceptible. Abiotic stress caused a greater reduction of photosynthetic carbon assimilation in the susceptible cultivars which was associated with a lower leaf transpiration rate. Oxidative stress, as estimated by the accumulation of malondialdehyde was not induced by stress treatments in any of the genotypes with the exception of drought stress in Russett Burbank. Stress treatment resulted in increases in ascorbate peroxidase activity in all cultivars except Agria which increased catalase activity in response to stress. Transcript profiling highlighted a decrease in the abundance of transcripts encoding proteins associated with PSII light harvesting complex in stress tolerant cultivars. Furthermore, stress tolerant cultivars accumulated fewer transcripts encoding a type-1 metacaspase implicated in programmed cell death. Stress tolerant cultivars exhibited stronger expression of genes associated with plant growth and development, hormone metabolism and primary and secondary metabolism than stress susceptible cultivars. Metabolite profiling revealed accumulation of proline in all genotypes following drought stress that was partially suppressed in combined heat and drought. On the contrary, the sugar alcohols inositol and mannitol were strongly accumulated under heat and combined heat and drought stress while galactinol was most strongly accumulated under drought. Combined heat and drought also resulted in the accumulation of Valine, isoleucine, and lysine in all genotypes. These data indicate that single and multiple abiotic stress tolerance in potato is associated with a maintenance of CO2 assimilation and protection of PSII by a reduction of light harvesting capacity. The data further suggests that stress tolerant cultivars suppress cell death and maintain growth and development via fine tuning of hormone signaling, and primary and secondary metabolism. This study highlights potential targets for the development of stress tolerant potato cultivars.
RESUMO
Astaxanthin from Haematococcus pluvialis is commercially produced in a two-stage process, involving green vegetative (macrozooid) and red aplanospore stages. This approach has been scaled up to an industrial process but constraints limit its commercial success and profitability, including: contamination issues, high pigment extraction costs, requirements for high light levels and photo-bleaching in the red stage. However, in addition to the aplanospore stage, this alga can produce astaxanthin in vegetative palmelloid and motile macrozooid cells. In this study, a two-stage process utilising different media in the green stage, with subsequent re-suspension in medium without nitrate was employed to optimise the formation of red motile macrozooids. Optimal growth in the green phase was obtained on cultivation under mixotrophic conditions in EG:JM media followed by re-suspension in medium without nitrate resulting in red motile macrozooids with an astaxanthin content of 2.74% (78.4% of total carotenoids) and a lipid content of 35.3% (rich in unsaturated fatty acids. It is envisaged that the red motile macrozooids could be harvested and fed as a whole-cell product directly in the animal feed and aquaculture sectors, or used as a blend of carotenoids and polyunsaturated fatty acids (PUFAs) in nutraceutical products.
RESUMO
Solanesol is a high value 45-carbon, unsaturated, all-trans-nonaprenol isoprenoid. Recently solanesol has received particular attention because of its utility, both in its own right and as a precursor in the production of numerous compounds used in the treatment of disease states. Solanesol is found mainly in solanaceous crops such as potato, tomato, tobacco and pepper where it accumulates in the foliage. There is considerable potential to explore the extraction of solanesol from these sources as a valuable co-product. In this study we have characterized the genetic variation in leaf solanesol content in a biparental, segregating diploid potato population. We demonstrate that potato leaf solanesol content is genetically controlled and identify several quantitative trait loci associated with leaf solanesol content. Transient over-expression of genes from the methylerythritol 4-phosphate (MEP) and mevalonic acid (MVA) pathways, either singly or in combination, resulted in enhanced accumulation of solanesol in leaves of Nicotiana benthamiana, providing insights for genetically engineering the pathway. We also demonstrate that in potato, leaf solanesol content is enhanced by up to six-fold on exposure to moderately elevated temperature and show corresponding changes in expression patterns of MEP and MVA genes. Our combined approaches offer new insights into solanesol accumulation and strategies for developing a bio-refinery approach to potato production.
RESUMO
Astaxanthin is a high value carotenoid produced by some bacteria, a few green algae, several fungi but only a limited number of plants from the genus Adonis. Astaxanthin has been industrially exploited as a feed supplement in poultry farming and aquaculture. Consumption of ketocarotenoids, most notably astaxanthin, is also increasingly associated with a wide range of health benefits, as demonstrated in numerous clinical studies. Currently astaxanthin is produced commercially by chemical synthesis or from algal production systems. Several studies have used a metabolic engineering approach to produce astaxanthin in transgenic plants. Previous attempts to produce transgenic potato tubers biofortified with astaxanthin have met with limited success. In this study we have investigated approaches to optimising tuber astaxanthin content. It is demonstrated that the selection of appropriate parental genotype for transgenic approaches and stacking carotenoid biosynthetic pathway genes with the cauliflower Or gene result in enhanced astaxanthin content, to give six-fold higher tuber astaxanthin content than has been achieved previously. Additionally we demonstrate the effects of growth environment on tuber carotenoid content in both wild type and astaxanthin-producing transgenic lines and describe the associated transcriptome and metabolome restructuring.
Assuntos
Carotenoides/metabolismo , Solanum tuberosum/genética , Carotenoides/química , Meio Ambiente , Patrimônio Genético , Engenharia Metabólica , Metaboloma , Tubérculos/química , Tubérculos/genética , Tubérculos/metabolismo , Plantas Geneticamente Modificadas , Solanum tuberosum/química , Solanum tuberosum/metabolismo , Transcriptoma , Transgenes , Xantofilas/química , Xantofilas/metabolismoRESUMO
Carotenoids are isoprenoids with important biological roles both for plants and animals. The yellow flesh colour of potato (Solanum tuberosum L.) tubers is a quality trait dependent on the types and levels of carotenoids that accumulate. The carotenoid biosynthetic pathway is well characterised, facilitating the successful engineering of carotenoid content in numerous crops including potato. However, a clear understanding concerning the factors regulating carotenoid accumulation and localisation in plant storage organs, such as tubers, is lacking. In the present study, the localisation of key carotenoid biosynthetic enzymes was investigated, as one of the unexplored factors that could influence the accumulation of carotenoids in potato tubers. Stable transgenic potato plants were generated by over-expressing ß-CAROTENE HYDROXYLASE 2 (CrtRb2) and PHYTOENE SYNTHASE 2 (PSY2) genes, fused to red fluorescent protein (RFP). Gene expression and carotenoid levels were both significantly increased, confirming functionality of the fluorescently tagged proteins. Confocal microscopy studies revealed different sub-organellar localisations of CrtRb2-RFP and PSY2-RFP within amyloplasts. CrtRb2 was detected in small vesicular structures, inside amyloplasts, whereas PSY2 was localised in the stroma of amyloplasts. We conclude that it is important to consider the location of biosynthetic enzymes when engineering the carotenoid metabolic pathway in storage organs such as tubers.