Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Magn Reson Med ; 92(2): 751-760, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38469944

RESUMO

PURPOSE: To develop an inline automatic quality control to achieve consistent diagnostic image quality with subject-specific scan time, and to demonstrate this method for 2D phase-contrast flow MRI to reach a predetermined SNR. METHODS: We designed a closed-loop feedback framework between image reconstruction and data acquisition to intermittently check SNR (every 20 s) and automatically stop the acquisition when a target SNR is achieved. A free-breathing 2D pseudo-golden-angle spiral phase-contrast sequence was modified to listen for image-quality messages from the reconstructions. Ten healthy volunteers and 1 patient were imaged at 0.55 T. Target SNR was selected based on retrospective analysis of cardiac output error, and performance of the automatic SNR-driven "stop" was assessed inline. RESULTS: SNR calculation and automated segmentation was feasible within 20 s with inline deployment. The SNR-driven acquisition time was 2 min 39 s ± 67 s (aorta) and 3 min ± 80 s (main pulmonary artery) with a min/max acquisition time of 1 min 43 s/4 min 52 s (aorta) and 1 min 43 s/5 min 50 s (main pulmonary artery) across 6 healthy volunteers, while ensuring a diagnostic measurement with relative absolute error in quantitative flow measurement lower than 2.1% (aorta) and 6.3% (main pulmonary artery). CONCLUSION: The inline quality control enables subject-specific optimized scan times while ensuring consistent diagnostic image quality. The distribution of automated stopping times across the population revealed the value of a subject-specific scan time.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Controle de Qualidade , Razão Sinal-Ruído , Humanos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Imageamento por Ressonância Magnética/métodos , Masculino , Voluntários Saudáveis , Algoritmos , Feminino , Artéria Pulmonar/diagnóstico por imagem , Aorta/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Estudos Retrospectivos , Respiração , Reprodutibilidade dos Testes
3.
Magn Reson Med ; 92(1): 346-360, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38394163

RESUMO

PURPOSE: To introduce alternating current-controlled, conductive ink-printed marker that could be implemented with both custom and commercial interventional devices for device tracking under MRI using gradient echo, balanced SSFP, and turbo spin-echo sequences. METHODS: Tracking markers were designed as solenoid coils and printed on heat shrink tubes using conductive ink. These markers were then placed on three MR-compatible test samples that are typically challenging to visualize during MRI scans. MRI visibility of markers was tested by applying alternating and direct current to the markers, and the effects of applied current parameters (amplitude, frequency) on marker artifacts were tested for three sequences (gradient echo, turbo spin echo, and balanced SSFP) in a gel phantom, using 0.55T and 1.5T MRI scanners. Furthermore, an MR-compatible current supply circuit was designed, and the performance of the current-controlled markers was tested in one postmortem animal experiment using the current supply circuit. RESULTS: Direction and parameters of the applied current were determined to provide the highest conspicuity for all three sequences. Marker artifact size was controlled by adjusting the current amplitude, successfully. Visibility of a custom-designed, 20-gauge nitinol needle was increased in both in vitro and postmortem animal experiments using the current supply circuit. CONCLUSION: Current-controlled conductive ink-printed markers can be placed on custom or commercial MR-compatible interventional tools and can provide an easy and effective solution to device tracking under MRI for three sequences by adjusting the applied current parameters with respect to pulse sequence parameters using the current supply circuit.


Assuntos
Desenho de Equipamento , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Animais , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Artefatos , Imagem por Ressonância Magnética Intervencionista/instrumentação
4.
J Magn Reson Imaging ; 59(2): 412-430, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37530545

RESUMO

Cardiac MR imaging is well established for assessment of cardiovascular structure and function, myocardial scar, quantitative flow, parametric mapping, and myocardial perfusion. Despite the clear evidence supporting the use of cardiac MRI for a wide range of indications, it is underutilized clinically. Recent developments in low-field MRI technology, including modern data acquisition and image reconstruction methods, are enabling high-quality low-field imaging that may improve the cost-benefit ratio for cardiac MRI. Studies to-date confirm that low-field MRI offers high measurement concordance and consistent interpretation with clinical imaging for several routine sequences. Moreover, low-field MRI may enable specific new clinical opportunities for cardiac imaging such as imaging near metal implants, MRI-guided interventions, combined cardiopulmonary assessment, and imaging of patients with severe obesity. In this review, we discuss the recent progress in low-field cardiac MRI with a focus on technical developments and early clinical validation studies. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.


Assuntos
Coração , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Miocárdio , Radiografia , Processamento de Imagem Assistida por Computador/métodos
5.
J Cardiovasc Magn Reson ; 26(1): 101009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38342406

RESUMO

BACKGROUND: The 12-lead electrocardiogram (ECG) is a standard diagnostic tool for monitoring cardiac ischemia and heart rhythm during cardiac interventional procedures and stress testing. These procedures can benefit from magnetic resonance imaging (MRI) information; however, the MRI scanner magnetic field leads to ECG distortion that limits ECG interpretation. This study evaluated the potential for improved ECG interpretation in a "low field" 0.55T MRI scanner. METHODS: The 12-lead ECGs were recorded inside 0.55T, 1.5T, and 3T MRI scanners, as well as at scanner table "home" position in the fringe field and outside the scanner room (seven pigs). To assess interpretation of ischemic ECG changes in a 0.55T MRI scanner, ECGs were recorded before and after coronary artery occlusion (seven pigs). ECGs was also recorded for five healthy human volunteers in the 0.55T scanner. ECG error and variation were assessed over 2-minute recordings for ECG features relevant to clinical interpretation: the PR interval, QRS interval, J point, and ST segment. RESULTS: ECG error was lower at 0.55T compared to higher field scanners. Only at 0.55T table home position, did the error approach the guideline recommended 0.025 mV ceiling for ECG distortion (median 0.03 mV). At scanner isocenter, only in the 0.55T scanner did J point error fall within the 0.1 mV threshold for detecting myocardial ischemia (median 0.03 mV in pigs and 0.06 mV in healthy volunteers). Correlation of J point deviation inside versus outside the 0.55T scanner following coronary artery occlusion was excellent at scanner table home position (r2 = 0.97), and strong at scanner isocenter (r2 = 0.92). CONCLUSION: ECG distortion is improved in 0.55T compared to 1.5T and 3T MRI scanners. At scanner home position, ECG distortion at 0.55T is low enough that clinical interpretation appears feasible without need for more cumbersome patient repositioning. At 0.55T scanner isocenter, ST segment changes during coronary artery occlusion appear detectable but distortion is enough to obscure subtle ST segment changes that could be clinically relevant. Reduced ECG distortion in 0.55T scanners may simplify the problem of suppressing residual distortion by ECG cable positioning, averaging, and filtering and could reduce current restrictions on ECG monitoring during interventional MRI procedures.


Assuntos
Eletrocardiografia , Frequência Cardíaca , Imageamento por Ressonância Magnética , Valor Preditivo dos Testes , Eletrocardiografia/instrumentação , Animais , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/instrumentação , Masculino , Modelos Animais de Doenças , Potenciais de Ação , Feminino , Fatores de Tempo , Sus scrofa , Artefatos , Adulto , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Oclusão Coronária/diagnóstico por imagem , Oclusão Coronária/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Sistema de Condução Cardíaco/diagnóstico por imagem , Suínos
6.
Magn Reson Med ; 90(2): 552-568, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37036033

RESUMO

PURPOSE: To develop 2D turbo spin-echo (TSE) imaging using annular spiral rings (abbreviated "SPRING-RIO TSE") with compensation of concomitant gradient fields and B0 inhomogeneity at both 0.55T and 1.5T for fast T2 -weighted imaging. METHODS: Strategies of gradient waveform modifications were implemented in SPRING-RIO TSE for compensation of self-squared concomitant gradient terms at the TE and across echo spacings, along with reconstruction-based corrections to simultaneously compensate for the residual concomitant gradient and B0 field induced phase accruals along the readout. The signal pathway disturbance caused by time-varying and spatially dependent concomitant fields was simulated, and echo-to-echo phase variations before and after sequence-based compensation were compared. Images from SPRING-RIO TSE with no compensation, with compensation, and Cartesian TSE were also compared via phantom and in vivo acquisitions. RESULTS: Simulation showed how concomitant fields affected the signal evolution with no compensation, and both simulation and phantom studies demonstrated the performance of the proposed sequence modifications, as well as the readout off-resonance corrections. Volunteer data showed that after full correction, the SPRING-RIO TSE sequence achieved high image quality with improved SNR efficiency (15%-20% increase), and reduced RF SAR (˜50% reduction), compared to the standard Cartesian TSE, presenting potential benefits, especially in regaining SNR at low-field (0.55T). CONCLUSION: Implementation of SPRING-RIO TSE with concomitant field compensation was tested at 0.55T and 1.5T. The compensation principles can be extended to correct for other trajectory types that are time-varying along the echo train and temporally asymmetric in TSE-based imaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Aumento da Imagem/métodos , Imagens de Fantasmas , Fenômenos Magnéticos
7.
Magn Reson Med ; 90(4): 1396-1413, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37288601

RESUMO

PURPOSE: Exercise-induced dyspnea caused by lung water is an early heart failure symptom. Dynamic lung water quantification during exercise is therefore of interest to detect early stage disease. This study developed a time-resolved 3D MRI method to quantify transient lung water dynamics during rest and exercise stress. METHODS: The method was evaluated in 15 healthy subjects and 2 patients with heart failure imaged in transitions between rest and exercise, and in a porcine model of dynamic extravascular lung water accumulation through mitral regurgitation (n = 5). Time-resolved images were acquired at 0.55T using a continuous 3D stack-of-spirals proton density weighted sequence with 3.5 mm isotropic resolution, and derived using a motion corrected sliding-window reconstruction with 90-s temporal resolution in 20-s increments. A supine MRI-compatible pedal ergometer was used for exercise. Global and regional lung water density (LWD) and percent change in LWD (ΔLWD) were automatically quantified. RESULTS: A ΔLWD increase of 3.3 ± 1.5% was achieved in the animals. Healthy subjects developed a ΔLWD of 7.8 ± 5.0% during moderate exercise, peaked at 16 ± 6.8% during vigorous exercise, and remained unchanged over 10 min at rest (-1.4 ± 3.5%, p = 0.18). Regional LWD were higher posteriorly compared the anterior lungs (rest: 33 ± 3.7% vs 20 ± 3.1%, p < 0.0001; peak exercise: 36 ± 5.5% vs 25 ± 4.6%, p < 0.0001). Accumulation rates were slower in patients than healthy subjects (2.0 ± 0.1%/min vs 2.6 ± 0.9%/min, respectively), whereas LWD were similar at rest (28 ± 10% and 28 ± 2.9%) and peak exercise (ΔLWD 17 ± 10% vs 16 ± 6.8%). CONCLUSION: Lung water dynamics can be quantified during exercise using continuous 3D MRI and a sliding-window image reconstruction.


Assuntos
Insuficiência Cardíaca , Imageamento por Ressonância Magnética , Animais , Suínos , Pulmão/diagnóstico por imagem , Teste de Esforço
8.
Magn Reson Med ; 90(4): 1682-1694, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37345725

RESUMO

In March 2022, the first ISMRM Workshop on Low-Field MRI was held virtually. The goals of this workshop were to discuss recent low field MRI technology including hardware and software developments, novel methodology, new contrast mechanisms, as well as the clinical translation and dissemination of these systems. The virtual Workshop was attended by 368 registrants from 24 countries, and included 34 invited talks, 100 abstract presentations, 2 panel discussions, and 2 live scanner demonstrations. Here, we report on the scientific content of the Workshop and identify the key themes that emerged. The subject matter of the Workshop reflected the ongoing developments of low-field MRI as an accessible imaging modality that may expand the usage of MRI through cost reduction, portability, and ease of installation. Many talks in this Workshop addressed the use of computational power, efficient acquisitions, and contemporary hardware to overcome the SNR limitations associated with low field strength. Participants discussed the selection of appropriate clinical applications that leverage the unique capabilities of low-field MRI within traditional radiology practices, other point-of-care settings, and the broader community. The notion of "image quality" versus "information content" was also discussed, as images from low-field portable systems that are purpose-built for clinical decision-making may not replicate the current standard of clinical imaging. Speakers also described technical challenges and infrastructure challenges related to portability and widespread dissemination, and speculated about future directions for the field to improve the technology and establish clinical value.


Assuntos
Imageamento por Ressonância Magnética , Radiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Software
9.
J Cardiovasc Magn Reson ; 25(1): 48, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37574552

RESUMO

Transcatheter cardiovascular interventions increasingly rely on advanced imaging. X-ray fluoroscopy provides excellent visualization of catheters and devices, but poor visualization of anatomy. In contrast, magnetic resonance imaging (MRI) provides excellent visualization of anatomy and can generate real-time imaging with frame rates similar to X-ray fluoroscopy. Realization of MRI as a primary imaging modality for cardiovascular interventions has been slow, largely because existing guidewires, catheters and other devices create imaging artifacts and can heat dangerously. Nonetheless, numerous clinical centers have started interventional cardiovascular magnetic resonance (iCMR) programs for invasive hemodynamic studies or electrophysiology procedures to leverage the clear advantages of MRI tissue characterization, to quantify cardiac chamber function and flow, and to avoid ionizing radiation exposure. Clinical implementation of more complex cardiovascular interventions has been challenging because catheters and other tools require re-engineering for safety and conspicuity in the iCMR environment. However, recent innovations in scanner and interventional device technology, in particular availability of high performance low-field MRI scanners could be the inflection point, enabling a new generation of iCMR procedures. In this review we review these technical considerations, summarize contemporary clinical iCMR experience, and consider potential future applications.


Assuntos
Cateterismo Cardíaco , Imagem por Ressonância Magnética Intervencionista , Humanos , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
10.
J Cardiovasc Magn Reson ; 25(1): 1, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36642713

RESUMO

BACKGROUND: Left ventricular (LV) contractility and compliance are derived from pressure-volume (PV) loops during dynamic preload reduction, but reliable simultaneous measurements of pressure and volume are challenging with current technologies. We have developed a method to quantify contractility and compliance from PV loops during a dynamic preload reduction using simultaneous measurements of volume from real-time cardiovascular magnetic resonance (CMR) and invasive LV pressures with CMR-specific signal conditioning. METHODS: Dynamic PV loops were derived in 16 swine (n = 7 naïve, n = 6 with aortic banding to increase afterload, n = 3 with ischemic cardiomyopathy) while occluding the inferior vena cava (IVC). Occlusion was performed simultaneously with the acquisition of dynamic LV volume from long-axis real-time CMR at 0.55 T, and recordings of invasive LV and aortic pressures, electrocardiogram, and CMR gradient waveforms. PV loops were derived by synchronizing pressure and volume measurements. Linear regression of end-systolic- and end-diastolic- pressure-volume relationships enabled calculation of contractility. PV loops measurements in the CMR environment were compared to conductance PV loop catheter measurements in 5 animals. Long-axis 2D LV volumes were validated with short-axis-stack images. RESULTS: Simultaneous PV acquisition during IVC-occlusion was feasible. The cardiomyopathy model measured lower contractility (0.2 ± 0.1 mmHg/ml vs 0.6 ± 0.2 mmHg/ml) and increased compliance (12.0 ± 2.1 ml/mmHg vs 4.9 ± 1.1 ml/mmHg) compared to naïve animals. The pressure gradient across the aortic band was not clinically significant (10 ± 6 mmHg). Correspondingly, no differences were found between the naïve and banded pigs. Long-axis and short-axis LV volumes agreed well (difference 8.2 ± 14.5 ml at end-diastole, -2.8 ± 6.5 ml at end-systole). Agreement in contractility and compliance derived from conductance PV loop catheters and in the CMR environment was modest (intraclass correlation coefficient 0.56 and 0.44, respectively). CONCLUSIONS: Dynamic PV loops during a real-time CMR-guided preload reduction can be used to derive quantitative metrics of contractility and compliance, and provided more reliable volumetric measurements than conductance PV loop catheters.


Assuntos
Cateterismo Cardíaco , Isquemia Miocárdica , Suínos , Animais , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Função Ventricular Esquerda , Volume Sistólico
11.
MAGMA ; 36(3): 465-475, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37306784

RESUMO

OBJECTIVE: Diagnostic-quality neuroimaging methods are vital for widespread clinical adoption of low field MRI. Spiral imaging is an efficient acquisition method that can mitigate the reduced signal-to-noise ratio at lower field strengths. As concomitant field artifacts are worse at lower field, we propose a generalizable quadratic gradient-field nulling as an echo-to-echo compensation and apply it to spiral TSE at 0.55 T. MATERIALS AND METHODS: A spiral in-out TSE acquisition was developed with a compensation for concomitant field variation between spiral interleaves, by adding bipolar gradients around each readout to minimize phase differences at each refocusing pulse. Simulations were performed to characterize concomitant field compensation approaches. We demonstrate our proposed compensation method in phantoms and (n = 8) healthy volunteers at 0.55 T. RESULTS: Spiral read-outs with integrated spoiling demonstrated strong concomitant field artifacts but were mitigated using the echo-to-echo compensation. Simulations predicted a decrease of concomitant field phase RMSE between echoes of 42% using the proposed compensation. Spiral TSE improved SNR by 17.2 ± 2.3% compared to reference Cartesian acquisition. DISCUSSION: We demonstrated a generalizable approach to mitigate concomitant field artifacts for spiral TSE acquisitions via the addition of quadratic-nulling gradients, which can potentially improve neuroimaging at low-field through increased acquisition efficiency.


Assuntos
Encéfalo , Aumento da Imagem , Humanos , Aumento da Imagem/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Razão Sinal-Ruído , Artefatos
12.
Magn Reson Med ; 88(2): 691-710, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35445768

RESUMO

PURPOSE: To develop and evaluate an improved strategy for compensating concomitant field effects in non-Cartesian MRI at the time of image reconstruction. THEORY: We present a higher-order reconstruction method, denoted as MaxGIRF, for non-Cartesian imaging that simultaneously corrects off-resonance, concomitant fields, and trajectory errors without requiring specialized hardware. Gradient impulse response functions are used to predict actual gradient waveforms, which are in turn used to estimate the spatiotemporally varying concomitant fields based on analytic expressions. The result, in combination with a reference field map, is an encoding matrix that incorporates a correction for all three effects. METHODS: The MaxGIRF reconstruction is applied to noiseless phantom simulations, spiral gradient-echo imaging of an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom, and axial and sagittal multislice spiral spin-echo imaging of a healthy volunteer at 0.55 T. The MaxGIRF reconstruction was compared against previously established concomitant field-compensation and image-correction methods. Reconstructed images are evaluated qualitatively and quantitatively using normalized RMS error. Finally, a low-rank approximation of MaxGIRF is used to reduce computational burden. The accuracy of the low-rank approximation is studied as a function of minimum rank. RESULTS: The MaxGIRF reconstruction successfully mitigated blurring artifacts both in phantoms and in vivo and was effective in regions where concomitant fields counteract static off-resonance, superior to the comparator method. A minimum rank of 8 and 30 for axial and sagittal scans, respectively, gave less than 2% error compared with the full-rank reconstruction. CONCLUSIONS: The MaxGIRF reconstruction simultaneously corrects off-resonance, trajectory errors, and concomitant field effects. The impact of this method is greatest when imaging with longer readouts and/or at lower field strength.


Assuntos
Algoritmos , Artefatos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
13.
Magn Reson Med ; 87(4): 1784-1798, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34783391

RESUMO

PURPOSE: To develop an isotropic high-resolution stack-of-spirals UTE sequence for pulmonary imaging at 0.55 Tesla by leveraging a combination of robust respiratory-binning, trajectory correction, and concomitant-field corrections. METHODS: A stack-of-spirals golden-angle UTE sequence was used to continuously acquire data for 15.5 minutes. The data was binned to a stable respiratory phase based on superoinferior readout self-navigator signals. Corrections for trajectory errors and concomitant field artifacts, along with image reconstruction with conjugate gradient SENSE, were performed inline within the Gadgetron framework. Finally, data were retrospectively reconstructed to simulate scan times of 5, 8.5, and 12 minutes. Image quality was assessed using signal-to-noise, image sharpness, and qualitative reader scores. The technique was evaluated in healthy volunteers, patients with coronavirus disease 2019 infection, and patients with lung nodules. RESULTS: The technique provided diagnostic quality images with parenchymal lung SNR of 3.18 ± 0.0.60, 4.57 ± 0.87, 5.45 ± 1.02, and 5.89 ± 1.28 for scan times of 5, 8.5, 12, and 15.5 minutes, respectively. The respiratory binning technique resulted in significantly sharper images (p < 0.001) as measured with relative maximum derivative at the diaphragm. Concomitant field corrections visibly improved sharpness of anatomical structures away from iso-center. The image quality was maintained with a slight loss in SNR for simulated scan times down to 8.5 minutes. Inline image reconstruction and artifact correction were achieved in <5 minutes. CONCLUSION: The proposed pulmonary imaging technique combined efficient stack-of-spirals imaging with robust respiratory binning, concomitant field correction, and trajectory correction to generate diagnostic quality images with 1.75 mm isotropic resolution in 8.5 minutes on a high-performance 0.55 Tesla system.


Assuntos
COVID-19 , Imageamento Tridimensional , Artefatos , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Retrospectivos , SARS-CoV-2
14.
J Magn Reson Imaging ; 55(1): 81-99, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33295674

RESUMO

Real-time magnetic resonance imaging (RT-MRI) allows for imaging dynamic processes as they occur, without relying on any repetition or synchronization. This is made possible by modern MRI technology such as fast-switching gradients and parallel imaging. It is compatible with many (but not all) MRI sequences, including spoiled gradient echo, balanced steady-state free precession, and single-shot rapid acquisition with relaxation enhancement. RT-MRI has earned an important role in both diagnostic imaging and image guidance of invasive procedures. Its unique diagnostic value is prominent in areas of the body that undergo substantial and often irregular motion, such as the heart, gastrointestinal system, upper airway vocal tract, and joints. Its value in interventional procedure guidance is prominent for procedures that require multiple forms of soft-tissue contrast, as well as flow information. In this review, we discuss the history of RT-MRI, fundamental tradeoffs, enabling technology, established applications, and current trends. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Imageamento por Ressonância Magnética
15.
J Magn Reson Imaging ; 55(6): 1855-1863, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34668604

RESUMO

BACKGROUND: MRI T2* and R2* mapping have gained clinical acceptance for noninvasive assessment of iron overload. Lower field MRI may offer increased measurement dynamic range in patients with high iron concentration and may potentially increase MRI accessibility, but it is compromised by lower signal-to-noise ratio that reduces measurement precision. PURPOSE: To characterize a high-performance 0.55 T MRI system for evaluating patients with liver iron overload. STUDY TYPE: Prospective. POPULATION: Forty patients with known or suspected iron overload (sickle cell anemia [n = 5], ß-thalassemia [n = 3], and hereditary spherocytosis [n = 2]) and a liver iron phantom. FIELD STRENGTH/SEQUENCE: A breath-held multiecho gradient echo sequence at 0.55 T and 1.5 T. ASSESSMENT: Patients were imaged with T2*/R2* mapping 0.55 T and 1.5 T within 24 hours, and 16 patients returned for follow-up exams within 6-16 months, resulting in 56 paired studies. Liver T2* and R2* measurements and standard deviations were compared between 0.55 T and 1.5 T and used to validate a predictive model between field strengths. The model was then used to classify iron overload at 0.55 T. STATISTICAL TESTS: Linear regression and Bland-Altman analysis were used for comparisons, and measurement precision was assessed using the coefficient of variation. A P-value < 0.05 was considered statistically significant. RESULTS: R2* was significantly lower at 0.55 T in our cohort (488 ± 449 s-1 at 1.5 T vs. 178 ± 155 s-1 at 0.55 T, n = 56 studies) and in the patients with severe iron overload (937 ± 369 s-1 at 1.5 T vs. 339 ± 127 s-1 at 0.55 T, n = 23 studies). The coefficient of variation indicated reduced precision at 0.55 T (3.5 ± 2.2% at 1.5 T vs 6.9 ± 3.9% at 0.55 T). The predictive model accurately predicted 1.5 T R2* from 0.55 T R2* (Bland Altman bias = -6.6 ± 20.5%). Using this model, iron overload at 0.55 T was classified as: severe R2* > 185 s-1 , moderate 81 s-1  < R2* < 185 s-1 , and mild 45 s-1  < R2* < 91 s-1 . DATA CONCLUSION: We demonstrated that 0.55 T provides T2* and R2* maps that can be used for the assessment of liver iron overload in patients. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Sobrecarga de Ferro , Humanos , Ferro/análise , Sobrecarga de Ferro/diagnóstico por imagem , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos
16.
J Cardiovasc Magn Reson ; 24(1): 35, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668497

RESUMO

BACKGROUND: Quantitative assessment of dynamic lung water accumulation is of interest to unmask latent heart failure. We develop and validate a free-breathing 3D ultrashort echo time (UTE) sequence with automated inline image processing to image changes in lung water density (LWD) using high-performance 0.55 T cardiovascular magnetic resonance (CMR). METHODS: Quantitative lung water CMR was performed on 15 healthy subjects using free-breathing 3D stack-of-spirals proton density weighted UTE at 0.55 T. Inline image reconstruction and automated image processing was performed using the Gadgetron framework. A gravity-induced redistribution of LWD was provoked by sequentially acquiring images in the supine, prone, and again supine position. Quantitative validation was performed in a phantom array of vials containing mixtures of water and deuterium oxide. RESULTS: The phantom experiment validated the capability of the sequence in quantifying water density (bias ± SD 4.3 ± 4.8%, intraclass correlation coefficient, ICC = 0.97). The average global LWD was comparable between imaging positions (supine 24.7 ± 3.4%, prone 22.7 ± 3.1%, second supine 25.3 ± 3.6%), with small differences between imaging phases (first supine vs prone 2.0%, p < 0.001; first supine vs second supine - 0.6%, p = 0.001; prone vs second supine - 2.7%, p < 0.001). In vivo test-retest repeatability in LWD was excellent (- 0.17 ± 0.91%, ICC = 0.97). A regional LWD redistribution was observed in all subjects when repositioning, with a predominant posterior LWD accumulation when supine, and anterior accumulation when prone (difference in anterior-posterior LWD: supine - 11.6 ± 2.7%, prone 5.5 ± 2.7%, second supine - 11.4 ± 2.9%). Global LWD maps were calculated inline within 23.2 ± 0.3 s following the image reconstruction using the automated pipeline. CONCLUSIONS: Redistribution of LWD due to gravitational forces can be depicted and quantified using a validated free-breathing 3D proton density weighted UTE sequence and inline automated image processing pipeline on a high-performance 0.55 T CMR system.


Assuntos
Pulmão , Prótons , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes
18.
Magn Reson Med ; 85(6): 3196-3210, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33480108

RESUMO

PURPOSE: Low-field (<1 tesla) MRI scanners allow more widespread diagnostic use for a range of cardiac, musculoskeletal, and neurological applications. However, the feasibility of performing robust fMRI at low field has yet to be fully demonstrated. To address this gap, we investigated task-based fMRI using a highly sensitive transition-band balanced steady-state free precession approach and standard EPI on a 0.55 tesla scanner equipped with modern high-performance gradient coils and a receive array. METHODS: TR and flip-angle of transition-band steady-state free precession were optimized for 0.55 tesla by simulations. Static shimming was employed to compensate for concomitant field effects. Visual task-based fMRI data were acquired from 8 healthy volunteers. For comparison, standard EPI data were also acquired with TE = T2∗ . Retrospective image-based correction for physiological effects (RETROICOR) was used to quantify physiological noise effects. RESULTS: Activation was robustly detected using both methods in a 4-min scan time. Transition-band steady-state free precession was found to be sensitive to interference from subtle spatial and temporal (field drift, respiration) variations in the magnetic field, counteracting potential advantages of the reduced magnetic susceptibility effects compared to its utilization at high field. These adverse effects could be partially remedied with static shimming and postprocessing approaches. Standard EPI proved more robust against the sources of interference. CONCLUSION: BOLD contrast is sufficiently large at 0.55 tesla for robust detection of brain activation and may be employed to broaden the spectrum of applications of low-field MRI. Standard EPI outperforms transition-band steady-state free precession in terms of signal stability.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Estudos Retrospectivos
19.
Magn Reson Med ; 85(5): 2904-2914, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33347642

RESUMO

PURPOSE: This work aims to demonstrate the use of an "active" acousto-optic marker with enhanced visibility and reduced radiofrequency (RF) -induced heating for interventional MRI. METHODS: The acousto-optic marker was fabricated using bulk piezoelectric crystal and π-phase shifted fiber Bragg grating (FBGs) and coupled to a distal receiver coil on an 8F catheter. The received MR signal is transmitted over an optical fiber to mitigate RF-induced heating. A photodetector converts the optical signal into electrical signal, which is used as the input signal to the MRI receiver plug. Acousto-optic markers were characterized in phantom studies. RF-induced heating risk was evaluated according to ASTM 2182 standard. In vivo real-time tracking capability was tested in an animal model under a 0.55T scanner. RESULTS: Signal-to-noise ratio (SNR) levels suitable for real-time tracking were obtained by using high sensitivity FBG and piezoelectric transducer with resonance matched to Larmor frequency. Single and multiple marker coils integrated to 8F catheters were readout for position and orientation tracking by a single acousto-optic sensor. RF-induced heating was significantly reduced compared to a coax cable connected reference marker. Real-time distal tip tracking of an active device was demonstrated in an animal model with a standard real-time cardiac MR sequence. CONCLUSION: Acousto-optic markers provide sufficient SNR with a simple structure for real-time device tracking. RF-induced heating is significantly reduced compared to conventional active markers. Also, multiple RF receiver coils connected on an acousto-optic modulator can be used on a single catheter for determining catheter orientation and shape.


Assuntos
Imagem por Ressonância Magnética Intervencionista , Imageamento por Ressonância Magnética , Animais , Catéteres , Desenho de Equipamento , Imagens de Fantasmas
20.
NMR Biomed ; 34(8): e4562, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34080253

RESUMO

The purpose of this study was to evaluate oxygen-enhanced pulmonary imaging at 0.55 T with 3D stack-of-spirals ultrashort-TE (UTE) acquisition. Oxygen-enhanced pulmonary MRI offers the measurement of regional lung ventilation and perfusion using inhaled oxygen as a contrast agent. Low-field MRI systems equipped with contemporary hardware can provide high-quality structural lung imaging by virtue of the prolonged T2 *. Fortuitously, the T1 relaxivity of oxygen increases at lower field strengths, which is expected to improve the sensitivity of oxygen-enhanced lung MRI. We implemented a breath-held T1 -weighted 3D stack-of-spirals UTE acquisition with a 7 ms spiral-out readout. Measurement repeatability was assessed using five repetitions of oxygen-enhanced lung imaging in healthy volunteers (n = 7). The signal intensity at both normoxia and hyperoxia was strongly dependent on lung tissue density modulated by breath-hold volume during the five repetitions. A voxel-wise correction for lung tissue density improved the repeatability of percent signal enhancement maps (coefficient of variation = 34 ± 16%). Percent signal enhancement maps were compared in 15 healthy volunteers and 10 patients with lymphangioleiomyomatosis (LAM), a rare cystic disease known to reduce pulmonary function. We measured a mean percent signal enhancement of 9.0 ± 3.5% at 0.55 T in healthy volunteers, and reduced signal enhancement in patients with LAM (5.4 ± 4.8%, p = 0.02). The heterogeneity, estimated by the percent of lung volume exhibiting low enhancement, was significantly increased in patients with LAM compared with healthy volunteers (11.1 ± 6.0% versus 30.5 ± 13.1%, p = 0.01), illustrating the capability to measure regional functional deficits.


Assuntos
Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Oxigênio/química , Adulto , Feminino , Voluntários Saudáveis , Humanos , Imageamento Tridimensional , Pulmão/patologia , Linfangioleiomiomatose , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA