Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36613793

RESUMO

We examined the effects of an acute increase in blood pressure (BP) and renal sympathetic nerve activity (rSNA) induced by bicuculline (Bic) injection in the paraventricular nucleus of hypothalamus (PVN) or the effects of a selective increase in rSNA induced by renal nerve stimulation (RNS) on the renal excretion of sodium and water and its effect on sodium-hydrogen exchanger 3 (NHE3) activity. Uninephrectomized anesthetized male Wistar rats were divided into three groups: (1) Sham; (2) Bic PVN: (3) RNS + Bic injection into the PVN. BP and rSNA were recorded, and urine was collected prior and after the interventions in all groups. RNS decreased sodium (58%) and water excretion (53%) independently of BP changes (p < 0.05). However, after Bic injection in the PVN during RNS stimulation, the BP and rSNA increased by 30% and 60% (p < 0.05), respectively, diuresis (5-fold) and natriuresis (2.3-fold) were increased (p < 0.05), and NHE3 activity was significantly reduced, independently of glomerular filtration rate changes. Thus, an acute increase in the BP overcomes RNS, leading to diuresis, natriuresis, and NHE3 activity inhibition.


Assuntos
Rim , Sódio , Ratos , Animais , Masculino , Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio , Pressão Sanguínea , Ratos Wistar , Sistema Nervoso Simpático/metabolismo , Bicuculina/farmacologia
2.
Am J Physiol Regul Integr Comp Physiol ; 320(1): R88-R93, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146555

RESUMO

Elevated sympathetic vasomotor activity is a common feature of cardiorenal diseases. Therefore, the sympathetic nervous system is an important therapeutic target, particularly the fibers innervating the kidneys. In fact, renal denervation has been applied clinically and shown promising results in patients with hypertension and chronic kidney disease. However, the underlying mechanisms involved in the cardiorenal protection induced by renal denervation have not yet been fully clarified. This mini-review highlights historical and recent aspects related to the role of renal sensory fibers in the control of cardiorenal function under normal conditions and in experimental models of cardiovascular disease. Results have demonstrated that alterations in renal sensory function participate in the maintenance of elevated sympathetic vasomotor activity and cardiorenal changes; as such, renal sensory fibers may be a potential therapeutic target for the treatment of cardiorenal diseases. Although it has not yet been applied in clinical practice, selective afferent renal denervation may be promising, since such an approach maintains efferent activity and can provide more refined control of renal function compared with total renal denervation. However, more studies are needed to understand the mechanisms by which renal afferents partially contribute to such changes, in addition to the need to evaluate the safety and advantages of the approach for application in the clinical practice.


Assuntos
Vias Aferentes/fisiopatologia , Síndrome Cardiorrenal/fisiopatologia , Hipertensão Renovascular/fisiopatologia , Rim/inervação , Insuficiência Renal Crônica/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Vias Aferentes/cirurgia , Animais , Síndrome Cardiorrenal/cirurgia , Humanos , Hipertensão Renovascular/cirurgia , Insuficiência Renal Crônica/cirurgia , Simpatectomia , Sistema Nervoso Simpático/cirurgia
3.
Can J Physiol Pharmacol ; 99(8): 786-794, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33290163

RESUMO

Chronic nicotine exposure may increase cardiovascular risk by impairing the cardiac autonomic function. Besides, physical exercise (PE) has shown to improve cardiovascular health. Thus, we aimed to investigate the effects of PE on baroreflex sensitivity (BRS), heart rate variability (HRV), and sympathetic nerve activity (SNA) in chronically nicotine-exposed rats. Male Wistar rats were assigned to four independent groups: Control (treated with saline solution), Control+Ex (treated with saline and submitted to treadmill training), Nicotine (treated with Nicotine), and Nicotine+Ex (treated with nicotine and submitted to treadmill training). Nicotine (1 mg·kg-1) was administered daily for 28 consecutive days. PE consisted of running exercise (60%-70% of maximal aerobic capacity) for 45 min, 5 days per week, for 4 weeks. At the end of the protocol, cardiac BRS, HRV, renal SNA (rSNA), and renal BRS were assessed. Nicotine treatment decreased absolute values of HRV indexes, increased low frequency/high frequency ratio of HRV, reduced the bradycardic and sympatho-inhibitory baroreceptor reflex responses, and reduced the rSNA. PE effectively restored time-domain HRV indexes, the bradycardic and sympatho-inhibitory reflex responses, and the rSNA in chronic nicotine-treated rats. PE was effective in preventing the deterioration of time-domain parameters of HRV, arterial baroreceptor dysfunction, and the rSNA after nicotine treatment.


Assuntos
Barorreflexo , Animais , Frequência Cardíaca , Nicotina , Ratos
4.
Pflugers Arch ; 472(3): 325-334, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31925527

RESUMO

The ablation of renal nerves, by destroying both the sympathetic and afferent fibers, has been shown to be effective in lowering blood pressure in resistant hypertensive patients. However, experimental studies have reported that the removal of sympathetic fibers may lead to side effects, such as the impairment of compensatory cardiorenal responses during a hemodynamic challenge. In the present study, we evaluated the effects of the selective removal of renal afferent fibers on arterial hypertension, renal sympathetic nerve activity, and renal changes in a model of renovascular hypertension. After 4 weeks of clipping the left renal artery, afferent renal denervation (ARD) was performed by exposing the left renal nerve to a 33 mM capsaicin solution for 15 min. After 2 weeks of ARD, we found reduced MAP (~ 18%) and sympathoexcitation to both the ischemic and contralateral kidneys in the hypertensive group. Moreover, a reduction in reactive oxygen species was observed in the ischemic (76%) and contralateral (27%) kidneys in the 2K1C group. In addition, ARD normalized renal function markers and proteinuria and podocin in the contralateral kidney. Taken altogether, we show that the selective removal of afferent fibers is an effective method to reduce MAP and improve renal changes without compromising the function of renal sympathetic fibers in the 2K1C model. Renal afferent nerves may be a new target in neurogenic hypertension and renal dysfunction.


Assuntos
Vias Aferentes/fisiopatologia , Hipertensão Renovascular/fisiopatologia , Isquemia/fisiopatologia , Nefropatias/fisiopatologia , Rim/fisiopatologia , Animais , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Masculino , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos , Ratos Wistar , Sistema Nervoso Simpático/fisiopatologia
5.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R282-R287, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579387

RESUMO

The control of sympathetic vasomotor activity involves a complex network within the brain and spinal circuits. An extensive range of studies has indicated that sympathoexcitation is a common feature in several cardiovascular diseases and that strategies to reduce sympathetic vasomotor overactivity in such conditions can be beneficial. In the present mini-review, we present evidence supporting the spinal cord as a potential therapeutic target to mitigate sympathetic vasomotor overactivity in cardiovascular diseases, focusing mainly on the actions of spinal angiotensin II on the control of sympathetic preganglionic neuronal activity.


Assuntos
Pressão Sanguínea/fisiologia , Neurônios/fisiologia , Medula Espinal/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Frequência Cardíaca/fisiologia , Interneurônios/fisiologia
6.
Cancer Immunol Immunother ; 68(2): 269-282, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30430204

RESUMO

Aging immune deterioration and Epstein-Barr (EBV) intrinsic mechanisms play an essential role in EBV-positive diffuse large B-cell lymphoma (DLBCL) of the elderly (EBV + DLBCLe) pathogenesis, through the expression of viral proteins, interaction with host molecules and epigenetic regulation, such as miR-155, required for induction of M1 phenotype of macrophages. This study aims to evaluate the relationship between macrophage polarization pattern in the tumor microenvironment and relative expression of miR-155 in EBV + DLBCLe and EBV-negative DLBCL patients. We studied 28 EBV + DLBCLe and 65 EBV-negative DLBCL patients. Tumor-associated macrophages (TAM) were evaluated by expression of CD68, CD163 and CD163/CD68 ratio (degree of M2 polarization), using tissue microarray. RNA was extracted from paraffin-embedded tumor samples for miR-155 relative expression study. We found a significantly higher CD163/CD68 ratio in EBV + DLBCLe compared to EBV-negative DLBCL. In EBV-negative DLBCL, CD163/CD68 ratio was higher among advanced-staged/high-tumor burden disease and overexpression of miR-155 was associated with decreased polarization to the M2 phenotype of macrophages. The opposite was observed in EBV + DLBCLe patients: we found a positive association between miR-155 relative expression and CD163/CD68 ratio, which was not significant after outlier exclusion. We believe that the higher CD163/CD68 ratio in this group is probably due to the presence of the EBV since it directly affects macrophage polarization towards M2 phenotype through cytokine secretion in the tumor microenvironment. Therapeutic strategies modulating miR-155 expression or preventing immuno-regulatory and pro-tumor macrophage polarization could be adjuvants in EBV + DLBCLe therapy since this entity has a rich infiltration of M2 macrophages in its tumor microenvironment.


Assuntos
Infecções por Vírus Epstein-Barr/imunologia , Linfoma Difuso de Grandes Células B/imunologia , Macrófagos/imunologia , MicroRNAs/imunologia , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/fisiologia , Humanos , Linfoma Difuso de Grandes Células B/complicações , Linfoma Difuso de Grandes Células B/genética , Ativação de Macrófagos/imunologia , Macrófagos/classificação , Macrófagos/metabolismo , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
7.
Kidney Blood Press Res ; 44(6): 1404-1415, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31671420

RESUMO

BACKGROUND: Mesenchymal stem cells (MSC) improve renal function and renovascular hypertension in the 2-kidney 1-clip model (2K-1C). While MSC play an immunomodulatory role, induce neoangiogenesis, and reduce fibrosis, they do not correct sodium loss by the contra-lateral kidney. OBJECTIVES: We investigated the tubular function of both stenotic and contralateral kidneys and the effect of MSC treatment by evaluating diuresis, natriuresis, and the expression of the main water and sodium transporters. METHOD: Adult Wistar rats were allocated into four groups: control (CT), CT+MSC, 2K-1C, and 2K-1C+MSC. MSC (2 × 105) were infused through the tail vein 3 and 5 weeks after clipping. Systolic blood pressure (SBP) was monitored weekly by plethysmography. Six weeks after clipping, 24-hour urine and blood samples were collected for biochemical analysis. Gene expression of the Na/H exchanger-3, epithelial sodium channel, Na/K-ATPase, Na/K/2Cl cotransporter, and aquaporins 1 and 2 (AQP1 and AQP2) were analyzed by RT-PCR. Intrarenal distribution of AQP1 and AQP2 was analyzed by immunohistochemistry. RESULTS: In hypertensive 2K-1C animals, MSC prevented additional increases in BP. AQP1, but not AQP2, was suppressed in the contralateral kidney, resulting in significant increase in urinary flow rate and sodium excretion. Gene expressions of sodium transporters were similar in both kidneys, suggesting that the high perfusing pressure in the contralateral kidney was responsible for increased natriuresis. Contralateral hypertensive kidney showed signs of renal deterioration with lower GFR in spite of normal RPF levels. CONCLUSIONS: MSC treatment improved renal function and enhanced the ability of the contralateral kidney to excrete sodium through a tubular independent mechanism contributing to reduce SBP.


Assuntos
Hipertensão Renovascular/terapia , Rim/metabolismo , Células-Tronco Mesenquimais/fisiologia , Sódio/metabolismo , Animais , Aquaporina 1/metabolismo , Aquaporina 2/metabolismo , Pressão Sanguínea , Diurese , Transplante de Células-Tronco Mesenquimais , Natriurese , Ratos , Ratos Wistar , Trocador 3 de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
J Physiol ; 596(15): 3201-3216, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29313987

RESUMO

KEY POINTS: Carotid bodies play a critical role in maintaining arterial pressure during hypoxia and this has important implications when considering resection therapy of the carotid body in disease states such as hypertension. Curbing hypertension in patients whether resting or under stress remains a major global health challenge. We demonstrated previously the benefits of removing carotid body afferent input into the brain for both alleviating sympathetic overdrive and reducing blood pressure in neurogenic hypertension. We describe a new approach in rats for selective ablation of the carotid bodies that spares the functional integrity of the carotid sinus baroreceptors, and demonstrate the importance of the carotid bodies in the haemodynamic response to forced exercise, hypoxia and hypercapnia in conditions of hypertension. Selective ablation reduced blood pressure in hypertensive rats and re-set baroreceptor reflex function accordingly; the increases in blood pressure seen during exercise, hypoxia and hypercapnia were unaffected, abolished and augmented, respectively, after selective carotid body removal. The data suggest that carotid body ablation may trigger potential cardiovascular risks particularly during hypoxia and hypercapnia and that suppression rather than obliteration of their activity may be a more effective and safer route to pursue. ABSTRACT: The carotid body has recently emerged as a promising therapeutic target for treating cardiovascular disease, but the potential impact of carotid body removal on the dynamic cardiovascular responses to acute stressors such as exercise, hypoxia and hypercapnia in hypertension is an important safety consideration that has not been studied. We first validated a novel surgical approach to selectively resect the carotid bodies bilaterally (CBR) sparing the carotid sinus baroreflex. Second, we evaluated the impact of CBR on the cardiovascular responses to exercise, hypoxia and hypercapnia in conscious, chronically instrumented spontaneously hypertensive (SH) rats. The results confirm that our CBR technique successfully and selectively abolished the chemoreflex, whilst preserving carotid baroreflex function. CBR produced a sustained fall in arterial pressure in the SH rat of ∼20 mmHg that persisted across both dark and light phases (P < 0.001), with baroreflex function curves resetting around lower arterial pressure levels. The cardiovascular and respiratory responses to moderate forced exercise were similar between CBR and Sham rats. In contrast, CBR abolished the pressor response to hypoxia seen in Sham animals, although the increases in heart rate and respiration were similar between Sham and CBR groups. Both the pressor and the respiratory responses to 7% hypercapnia were augmented after CBR (P < 0.05) compared to sham. Our finding that the carotid bodies play a critical role in maintaining arterial pressure during hypoxia has important implications when considering resection therapy of the carotid body in disease states such as hypertension as well as heart failure with sleep apnoea.


Assuntos
Corpo Carotídeo/fisiologia , Hipercapnia/fisiopatologia , Hipertensão/fisiopatologia , Hipóxia/fisiopatologia , Condicionamento Físico Animal/fisiologia , Animais , Pressão Sanguínea , Corpo Carotídeo/cirurgia , Frequência Cardíaca , Masculino , Ratos Endogâmicos SHR
9.
Exp Physiol ; 101(1): 67-80, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26537847

RESUMO

Our knowledge of mechanisms responsible for both the development and the maintenance of hypertension remains incomplete in the Goldblatt (two-kidney, one-clip; 2K1C) model. We tested the hypothesis that elevated sympathetic nerve activity (SNA) occurs before the onset of hypertension in 2K1C rats, considering the time course of the increase in SNA in relationship to the onset of the hypertension. We used a decorticated in situ working heart-brainstem preparation of three groups of male Wistar rats, namely sham-operated animals (SHAM, n = 7) and animals 3 weeks post-2K1C, of which some were hypertensive (2K1C-H, n = 6) and others normotensive (2K1C-N, n = 9), as determined in vivo a priori. Perfusion pressure was higher in both 2K1C groups (2K1C-H, 76 ± 1 mmHg; 2K1C-N, 74 ± 3 mmHg; versus SHAM, 60 ± 2 mmHg, P < 0.05). The SNA was significantly elevated in both 2K1C groups (2K1C-H, 47.7 ± 6.1 µV; 2K1C-N, 32.8 ± 2.8 µV; versus SHAM, 20.5 ± 2.5 µV, P < 0.05) owing to its increased respiratory modulation; the chemoreflex was augmented and baroreflex depressed. Precollicular transection reduced SNA in all groups (2K1C-H, -32.5 ± 7.5%; 2K1C-NH, -48 ± 6.9%; versus SHAM, -13.2 ± 1%, P < 0.05). Subsequent medullary spinal cord transection abolished SNA in both SHAM and 2K1C-N groups, but decreased it by only 57 ± 5.5% in 2K1C-H preparations. Thus, SNA is raised before the onset of hypertension, by the third week after renal artery clipping, and this originates, in part, from its enhanced respiratory modulation. Spinal circuits contribute to the elevation of SNA in the 2K1C model, but only after hypertension has developed.


Assuntos
Hipertensão Renovascular/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Animais , Barorreflexo , Pressão Sanguínea , Tronco Encefálico/fisiopatologia , Células Quimiorreceptoras , Coração/fisiopatologia , Frequência Cardíaca , Masculino , Rede Nervosa/fisiopatologia , Ratos , Ratos Wistar , Mecânica Respiratória , Simpatectomia
10.
Can J Physiol Pharmacol ; 94(6): 643-50, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27082032

RESUMO

The effects of chronic treatment with digitoxin on arterial baroreceptor sensitivity for heart rate (HR) and renal sympathetic nerve activity (rSNA) control, cardiopulmonary reflex, and autonomic HR control in an animal model of heart failure (HF) were evaluated. Wistar rats were treated with digitoxin, which was administered in their daily feed (1 mg/kg per day) for 60 days. The following 3 experimental groups were evaluated: sham, HF, and HF treated with digitoxin (HF + DIG). We observed an increase in rSNA in the HF group (190 ± 29 pps, n = 5) compared with the sham group (98 ± 14 pps, n = 5). Digitoxin treatment prevented an increase in rSNA (98 ± 14 pps, n = 7). Therefore, arterial baroreceptor sensitivity was decreased in the HF group (-1.24 ± 0.07 bpm/mm Hg, n = 8) compared with the sham group (-2.27 ± 0.23 bpm/mm Hg, n = 6). Digitoxin did not alter arterial baroreceptor sensitivity in the HF + DIG group. Finally, the HF group showed an increased low frequency band (LFb: 23 ± 5 ms(2), n = 8) and a decreased high frequency band (HFb: 77 ± 5 ms(2), n = 8) compared with the sham group (LFb: 14 ± 3 ms(2); HFb: 86 ± 3 ms(2), n = 9); the HF+DIG group exhibited normalized parameters (LFb: 15 ± 3 ms(2); HFb: 85 ± 3 ms(2), n = 9). In conclusion, the benefits of decreasing rSNA are not directly related to improvements in peripheral cardiovascular reflexes; such occurrences are due in part to changes in the central nuclei of the brain responsible for autonomic cardiovascular control.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Cardiotônicos/uso terapêutico , Digitoxina/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Frequência Cardíaca/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/fisiologia , Pressão Sanguínea/fisiologia , Cardiotônicos/farmacologia , Digitoxina/farmacologia , Ecocardiografia Doppler , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/fisiologia , Hemodinâmica/fisiologia , Masculino , Ratos , Ratos Wistar
11.
Am J Physiol Renal Physiol ; 308(8): F848-56, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25656367

RESUMO

Renal nerve stimulation at a low frequency (below 2 Hz) causes water and sodium reabsorption via α1-adrenoreceptor tubular activation, a process independent of changes in systemic blood pressure, renal blood flow, or glomerular filtration rate. However, the underlying mechanism of the reabsorption of sodium is not fully understood. Since the sympathetic nervous system and intrarenal ANG II appear to act synergistically to mediate the process of sodium reabsorption, we hypothesized that low-frequency acute electrical stimulation of the renal nerve (ESRN) activates NHE3-mediated sodium reabsorption via ANG II AT1 receptor activation in Wistar rats. We found that ESRN significantly increased urinary angiotensinogen excretion and renal cortical ANG II content, but not the circulating angiotensinogen levels, and also decreased urinary flow and pH and sodium excretion via mechanisms independent of alterations in creatinine clearance. Urinary cAMP excretion was reduced, as was renal cortical PKA activity. ESRN significantly increased NHE3 activity and abundance in the apical microvillar domain of the proximal tubule, decreased the ratio of phosphorylated NHE3 at serine 552/total NHE3, but did not alter total cortical NHE3 abundance. All responses mediated by ESRN were completely abolished by a losartan-mediated AT1 receptor blockade. Taken together, our results demonstrate that higher NHE3-mediated proximal tubular sodium reabsorption induced by ESRN occurs via intrarenal renin angiotensin system activation and triggering of the AT1 receptor/inhibitory G-protein signaling pathway, which leads to inhibition of cAMP formation and reduction of PKA activity.


Assuntos
Túbulos Renais Proximais/inervação , Túbulos Renais Proximais/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Reabsorção Renal , Sistema Renina-Angiotensina , Trocadores de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , Sistema Nervoso Simpático/fisiologia , Angiotensina II/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Angiotensinogênio/metabolismo , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Estimulação Elétrica , Concentração de Íons de Hidrogênio , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Natriurese , Fosforilação , Ratos Wistar , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Reabsorção Renal/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/efeitos dos fármacos , Fatores de Tempo , Urodinâmica
12.
Exp Physiol ; 100(5): 479-84, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25599970

RESUMO

NEW FINDINGS: What is the topic of this review? This review describes the role of renal nerves as the key carrier of signals from the kidneys to the CNS and vice versa; the brain and kidneys communicate through this carrier to maintain homeostasis in the body. What advances does it highlight? Whether renal or autonomic dysfunction is the predominant contributor to systemic hypertension is still debated. In this review, we focus on the role of the renal nerves in a model of renovascular hypertension. The sympathetic nervous system influences the renal regulation of arterial pressure and body fluid composition. Anatomical and physiological evidence has shown that sympathetic nerves mediate changes in urinary sodium and water excretion by regulating the renal tubular water and sodium reabsorption throughout the nephron, changes in the renal blood flow and the glomerular filtration rate by regulating the constriction of renal vasculature, and changes in the activity of the renin-angiotensin system by regulating the renin release from juxtaglomerular cells. Additionally, renal sensory afferent fibres project to the autonomic central nuclei that regulate blood pressure. Hence, renal nerves play a key role in the crosstalk between the kidneys and the CNS to maintain homeostasis in the body. Therefore, the increased sympathetic nerve activity to the kidney and the renal afferent nerve activity to the CNS may contribute to the outcome of diseases, such as hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Sistema Nervoso Central/fisiologia , Hipertensão/fisiopatologia , Rim/inervação , Circulação Renal/fisiologia , Animais , Humanos , Rim/irrigação sanguínea , Sistema Renina-Angiotensina/fisiologia
13.
Exp Physiol ; 100(5): 502-6, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25858030

RESUMO

NEW FINDINGS: What is the topic of this review? The sympathetic control of renal sodium tubular reabsorption is dependent on activation of the intrarenal renin-angiotensin system and activation of the angiotensin II type 1 (AT1 ) receptor by angiotensin II. What advances does it highlight? Despite the fact that the interaction between the sympathetic nervous system and angiotensin II regarding salt reabsorption is a well-known classical mechanism for the maintenance of extracellular volume homeostasis, the underlying molecular signalling is not clearly understood. It has been shown recently that renal nerve stimulation increases intrarenal angiotensin II and activates the AT1 receptor, triggering a signalling cascade that leads to elevations of Na(+) -H(+) exchanger isoform 3-mediated tubular transport. In this short review, the crosstalk between intrarenal angiotensin II and renal nerve activity and its effect on sodium reabsorption is addressed. In this review, we address the importance of the interaction between the sympathetic nervous system and intrarenal renin-angiotensin system in modulating renal tubular handling of sodium and water. We have recently shown that increased Na(+) -H(+) exchanger isoform 3 (NHE3) activity induced by renal nerve stimulation (RNS) depends on the activation of the angiotensin II type 1 (AT1 ) receptor by angiotensin II (Ang II). Low-frequency RNS resulted in higher levels of intrarenal angiotensinogen and Ang II independent of changes in blood pressure, the glomerular filtration rate and systemic angiotensinogen. Angiotensin II, via the AT1 receptor, triggered an intracellular pathway activating NHE3 in the renal cortex, leading to antinatriuresis and antidiuresis. Pharmacological blockade of the AT1 receptor with losartan prior to RNS abolished both the functional and the molecular responses, suggesting that intrarenal Ang II acting via the AT1 receptor is a major factor for NHE3-mediated sodium and water reabsorption induced by RNS.


Assuntos
Angiotensina II/metabolismo , Rim/metabolismo , Sistema Renina-Angiotensina/fisiologia , Sódio/metabolismo , Sistema Nervoso Simpático/fisiologia , Animais , Taxa de Filtração Glomerular/fisiologia , Humanos , Rim/irrigação sanguínea
14.
Exp Physiol ; 100(5): 496-501, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25639235

RESUMO

NEW FINDINGS: What is the topic of this review? This review addresses the underlying mechanisms involved in sympathoexcitation during renovascular hypertension, focusing on the importance of increased oxidative stress in the paraventricular nucleus and rostral ventrolateral medulla. What advances does it highlight? Whether renal or autonomic dysfunction is the major contributor to systemic hypertension following a renovascular insult is still a matter of debate. Here, we take an integrative approach by describing the crosstalk between the kidney and brain. We show how changes in the CNS, and in sympathetic premotor neurons in particular, are activated by ischaemic renal disease in an experimental model of renovascular hypertension. This review addresses the underlying mechanisms involved in the sympathoexcitation in renovascular hypertension. We focus on the importance of increased oxidative stress in the paraventricular nucleus of hypothalamus (PVN) and rostral ventrolateral medulla (RVLM) for the autonomic dysfunction associated with renovascular hypertension in the two-kidney, one-clip (2K-1C) model. We found in 2K-1C rats, 6 weeks after clipping, a significant increase in the mRNA and protein expression of the angiotensin II type 1 receptor within the RVLM and PVN. In addition, mRNA from NADPH oxidase subunits (p47phox and gp91phox) was greater in the RVLM and PVN of 2K-1C rats than in a sham-operated group. However, CuZn superoxide dismutase gene expression in these regions was not changed, suggesting that excessive production of reactive oxygen species overwhelms any endogenous antioxidant system in the RVLM and PVN in renovascular hypertension. In fact, acute administration of tempol or vitamin C (either i.v. or directly into the PVN or RVLM) caused a significant decrease in blood pressure and renal sympathetic nerve activity in 2K-1C rats, but not in control animals. Thus, we suggest that an increase in the activity of RVLM and PVN neurons triggered by angiotensin II and oxidative stress is a major mechanism involved in the maintenance of sympathoexcitation of the cardiovascular system in renovascular hypertension.


Assuntos
Hipertensão Renovascular/metabolismo , Rim/inervação , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Humanos , Hipertensão Renovascular/fisiopatologia , Estresse Oxidativo/fisiologia
15.
Exp Physiol ; 100(5): 491-5, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25605443

RESUMO

NEW FINDINGS: What is the topic of this review? The major topic of this review addresses the effects of mesenchymal stem cell treatment in renovascular hypertension. What advances does it highlight? This therapy may be a promising strategy to treat renovascular hypertension and its renal consequences in the near future. Renovascular hypertension induced by the two-kidney, one-clip technique is a renin-angiotensin system-dependent model that leads to renal vascular rarefaction, fibrosis and renal failure. Treatment of renovascular hypertension remains a challenge, and thus, new therapies are needed. In this report, we discuss the beneficial effects of mesenchymal stem cells on the reconstruction of the renal parenchyma of the stenotic kidney to improve vascular rarefaction and fibrosis. Mesenchymal stem cell therapy prevented the progressive increase in systolic arterial pressure, reduced sympathetic hyperactivity, improved renal morphology, induced neovascularization and reduced fibrosis in stenotic kidneys. Although this therapy may be a promising strategy to treat renovascular hypertension and its renal consequences, further studies are necessary to improve the efficiency of mesenchymal stem cells.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Hipertensão Renovascular/terapia , Rim/metabolismo , Células-Tronco Mesenquimais/citologia , Sistema Renina-Angiotensina/fisiologia , Animais , Pressão Sanguínea/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Hipertensão Renovascular/fisiopatologia
16.
J Sleep Res ; 23(2): 168-75, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24283672

RESUMO

Chronic short sleep duration has been linked to sympathoexcitation and increased risk of cardiovascular disease. The central nervous system plays an important role in the regulation of sympathetic activity. Thus, the present study evaluates the pre-autonomic neurones in the paraventricular nucleus of the hypothalamus and rostral ventrolateral medulla after sleep restriction using various protein expression measurements and electrophysiological approaches. Wistar male rats were assigned randomly to two experimental groups: control or sleep restriction for 14 days. Sleep restriction was defined as 20 h of paradoxical sleep deprivation followed by a 4 h sleep permission period using the modified multiple platform method. Micropunches of the paraventricular nucleus of the hypothalamus and rostral ventrolateral medulla were dissected to evaluate the protein expression of angiotensin II receptor, type 1 (AT1), AT2, gamma aminobutyric acidA ) (N-methyl-d-aspartate receptor1) and neuronal nitric oxide synthase neuronal nitric oxide synthase isoform through immunoblotting. Sleep restriction induced a down-regulation of the gamma aminobutyric acidA receptor in the paraventricular nucleus of the hypothalamus. Microinjection of bicuculline, a gamma aminobutyric acid receptor blocker, into the paraventricular nucleus of the hypothalamus increased renal sympathetic activity renal sympathetic nerve activity, mean arterial pressure and heart rate in anaesthetized control rats. However, the amplitude and frequency of renal sympathetic nerve activity was higher in the sleep restriction group. These findings suggest that gamma aminobutyric acidergic inhibition within the paraventricular nucleus of the hypothalamus is involved in sympathoexcitation induced by sleep restriction.


Assuntos
Pressão Sanguínea , Frequência Cardíaca , Núcleo Hipotalâmico Paraventricular/metabolismo , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Sistema Nervoso Simpático/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Bicuculina/administração & dosagem , Bicuculina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Regulação para Baixo , Frequência Cardíaca/efeitos dos fármacos , Rim/inervação , Rim/metabolismo , Masculino , Bulbo/metabolismo , Bulbo/fisiopatologia , Microinjeções , Óxido Nítrico Sintase Tipo I/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Distribuição Aleatória , Ratos , Ratos Wistar , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema Nervoso Simpático/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Ácido gama-Aminobutírico/efeitos dos fármacos
17.
Front Cell Neurosci ; 17: 1176634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674868

RESUMO

Introduction: The paraventricular nucleus of the hypothalamus (PVN) contains premotor neurons involved in the control of sympathetic vasomotor activity. It is known that the stimulation of specific areas of the PVN can lead to distinct response patterns at different target territories. The underlying mechanisms, however, are still unclear. Recent evidence from sympathetic nerve recording suggests that relevant information is coded in the power distribution of the signal along the frequency range. In the present study, we addressed the hypothesis that the PVN is capable of organizing specific spectral patterns of sympathetic vasomotor activation to distinct territories in both normal and hypertensive animals. Methods: To test it, we investigated the territorially differential changes in the frequency parameters of the renal and splanchnic sympathetic nerve activity (rSNA and sSNA, respectively), before and after disinhibition of the PVN by bicuculline microinjection. Subjects were control and Goldblatt rats, a sympathetic overactivity-characterized model of neurogenic hypertension (2K1C). Additionally, considering the importance of angiotensin II type 1 receptors (AT1) in the sympathetic responses triggered by bicuculline in the PVN, we also investigated the impact of angiotensin AT1 receptors blockade in the spectral features of the rSNA and sSNA activity. Results: The results revealed that each nerve activity (renal and splanchnic) presents its own electrophysiological pattern of frequency-coded rhythm in each group (control, 2K1C, and 2K1C treated with AT1 antagonist losartan) in basal condition and after bicuculline microinjection, but with no significant differences regarding total power comparison among groups. Additionally, the losartan 2K1C treated group showed no decrease in the hypertensive response triggered by bicuculline when compared to the non-treated 2K1C group. However, their spectral patterns of sympathetic nerve activity were different from the other two groups (control and 2K1C), suggesting that the blockade of AT1 receptors does not totally recover the basal levels of neither the autonomic responses nor the electrophysiological patterns in Goldblatt rats, but act on their spectral frequency distribution. Discussion: The results suggest that the differential responses evoked by the PVN were preferentially coded in frequency, but not in the global power of the vasomotor sympathetic responses, indicating that the PVN is able to independently control the frequency and the power of sympathetic discharges to different territories.

18.
Kidney Blood Press Res ; 35(5): 355-64, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22473039

RESUMO

BACKGROUND/AIM: Chronic kidney disease (CKD) is an increasing major public health problem worldwide. The sympathetic nervous system and nitric oxide play an important role in the pathogenesis of CKD. Traditional Chinese medicine has accumulated thousands of years of therapeutic experiences. Electroacupuncture (EA) and moxibustion (MO) are two such therapeutic strategies. The aim of this study was to investigate the renal and hemodynamic effects of EA-MO in an experimental model of a CKD. METHODS: Male Wistar rats submitted to 5/6th nephrectomy (5/6 NX) were studied for 8 weeks. There were four groups: (1) control, normal rats; (2) NX, 5/6 NX only; (3) NX-AS, 5/6 NX and EA-MO session using sham points, and (4) NX-AM, 5/6 NX and EA-MO session using real acupoints. Biochemical and blood pressure studies, renal sympathetic nerve activity measurements, nitric oxide levels and the histopathological indices were assessed. RESULTS: The EA- and MO-treated group presented significant improvement in all measured functional and histopathological parameters. CONCLUSION: These findings suggest that EA-MO had beneficial effects on CKD. This effect was probably achieved by the modulation of the renal sympathetic nerve activity and nitric oxide levels, leading to decreased blood pressure, which is associated with less proteinuria.


Assuntos
Eletroacupuntura/métodos , Moxibustão/métodos , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/terapia , Sistema Nervoso Simpático/fisiologia , Animais , Pressão Sanguínea/fisiologia , Creatinina/sangue , Modelos Animais de Doenças , Progressão da Doença , Glomerulosclerose Segmentar e Focal/fisiopatologia , Glomerulosclerose Segmentar e Focal/terapia , Hipertensão Renal/fisiopatologia , Hipertensão Renal/terapia , Rim/inervação , Rim/fisiologia , Masculino , Nefrectomia , Óxido Nítrico/metabolismo , Proteinúria/fisiopatologia , Proteinúria/terapia , Ratos , Ratos Wistar , Ureia/sangue , Urina
19.
Clin Exp Pharmacol Physiol ; 38(2): 144-52, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20678153

RESUMO

1. There is mounting evidence that increased oxidative stress and sympathetic nerve activity play important roles in renovascular hypertension. In the present review, we focus on the importance of oxidative stress in two distinct populations of neurons involved with cardiovascular regulation: those of the rostral ventrolateral medulla (RVLM) and those of the paraventricular nucleus of the hypothalamus (PVN) in the maintenance of sympathoexcitation and hypertension in two kidney-one clip (2K1C) hypertensive rats. Furthermore, the role of oxidative stress in the clipped kidney is also discussed. 2. In the studies reviewed in this article, it was found that hypertension and renal sympathoexcitation in 2K1C rats were associated with an increase in Angiotensin II type one receptor (AT(1) ) expression and in oxidative markers within the RVLM, PVN and in the clipped kidneys of 2K1C rats. Furthermore, acute or chronic anti-oxidant treatment decreased blood pressure and sympathetic activity, and improved the baroreflex control of heart rate and renal sympathetic nerve activity in 2K1C rats. Tempol or vitamin C administration in the RVLM, PVN or systemically all reduced blood pressure and renal sympathetic activity. Cardiovascular improvement in response to chronic anti-oxidant treatment was associated with a downregulation of AT(1) receptors, as well as oxidative markers in the central nuclei and clipped kidney. 3. The data discussed in the present review support the idea that an increase in oxidative stress within the RVLM, PVN and in the ischaemic kidney plays a major role in the maintenance of sympathoexcitation and hypertension in 2K1C rats.


Assuntos
Hipertensão Renovascular/metabolismo , Rim/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Angiotensina II/metabolismo , Animais , Barorreflexo , Humanos , Rim/inervação , NADPH Oxidases/genética , Ratos
20.
Peptides ; 146: 170660, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571055

RESUMO

Spinal cord neurons contribute to elevated sympathetic vasomotor activity in renovascular hypertension (2K1C), particularly, increased actions of angiotensin II. However, the origin of these spinal angiotensinergic inputs remains unclear. The present study aimed to investigate the role of spinal angiotensin II type 1 receptor (AT1) receptors in the sympathoexcitatory responses evoked by the activation of the rostral ventrolateral medulla (RVLM) in control and 2K1C Goldblatt rats. Hypertension was induced by clipping of the left renal artery. After 6 weeks, a catheter (PE-10) filled with losartan was inserted into the subarachnoid space and advanced to the T10-11 vertebral level in urethane-anesthetized rats. The effects of glutamate microinjection into the RVLM on blood pressure (BP), heart rate (HR), and renal and splanchnic sympathetic nerve activity (rSNA and sSNA, respectively) were evaluated in the presence or absence of spinal AT1 blockade. Tachycardic, pressor, and renal sympathoexcitatory effects caused by RVLM activation were significantly blunted by losartan in 2K1C rats, but not in control rats. However, no differences were found in the gene expression of angiotensin-converting enzyme, angiotensinogen, and renin in the spinal cord segments between the groups. In conclusion, acute sympathoexcitation induced by RVLM activation is dependent on the spinal AT1 receptor in Goldblatt, but not in control, rats. The involvement of other central cardiovascular nuclei in spinal angiotensinergic actions, as well as the source of angiotensin II, remains to be determined in the Goldblatt model.


Assuntos
Hipertensão/fisiopatologia , Rim/inervação , Bulbo/fisiologia , Receptor Tipo 1 de Angiotensina/fisiologia , Medula Espinal/metabolismo , Sistema Nervoso Simpático/fisiologia , Animais , Hipertensão/metabolismo , Masculino , Ratos , Ratos Wistar , Receptor Tipo 1 de Angiotensina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA