Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34960378

RESUMO

In this work, we develop a new design method based on fast Fourier transform (FFT) for implementing zone plates (ZPs) with bifocal focusing profiles. We show that the FFT of the governing binary sequence provides a discrete sequence of the same length, which indicates the location of the main foci at the ZP focusing profile. Then, using reverse engineering and establishing a target focusing profile, we are capable of generating a binary sequence that provides a ZP with the desired focusing profile. We show that this design method, based on the inverse fast Fourier transform (IFFT), is very flexible and powerful and allows to tailor the design of bifocal ZPs to achieve focusing profiles with the desired foci locations and resolutions. The key advantage of our design algorithm, compared to other alternatives presented in previous works, is that our method provides bifocal focusing profiles with an absolute control of the foci locations. Moreover, although we analyze the performance of this novel design algorithm for underwater ultrasonics, it can also be successfully extended to different fields of physics, such as optics or microwaves, where ZPs are widely employed.


Assuntos
Óculos , Óptica e Fotônica , Acústica , Algoritmos , Desenho de Equipamento
2.
Sensors (Basel) ; 21(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34577292

RESUMO

In this work, we analyze the effect of the distribution of transparent Fresnel regions over the focusing profile of Soret Zone Plates (SZP) based on binary sequences. It is shown that this effect becomes very significant in those fields where directional transducers are employed, such as microwaves or acoustics. A thorough analysis of both the SZP transmission efficiency and the focusing enhancement factor is presented. Moreover, experimental measurements are also carried out for a particular type of binary sequence, the Cantor ternary set, validating the theoretical model and demonstrating that the distribution of transparent Fresnel regions becomes a critical parameter in applications requiring directional emitters.

3.
Sensors (Basel) ; 21(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34372303

RESUMO

In this work, we analyze the effect of predistortion techniques on the focusing profile of Fresnel Zone Plates (FZPs) in ultrasound applications. This novel predistortion method is based on either increasing or decreasing the width of some of the FZP Fresnel rings by a certain amount. We investigate how the magnitude of the predistortion, as well as the number and location of the predistorted rings, influences the lens focusing profile. This focusing profile can be affected in different ways depending on the area of the lens where the predistortion is applied. It is shown that when the inner area of the lens, closer to its center, is predistorted, this technique allows the control of the focal depth at the main focus. However, when the predistortion is applied to an area farther from the center of the lens, the acoustic intensity distribution among the main focus and the closest adjacent secondary foci can be tailored at a certain degree. This predistortion technique shows great potential and can be used to control, modify and shape the FZP focusing profile in both industrial and therapeutic applications.


Assuntos
Lentes , Ultrassonografia
4.
Sensors (Basel) ; 20(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012864

RESUMO

In this work, we present a bifocal Fresnel zone plate (BiFZP) capable of generating focusing profiles with two different foci. The performance of the BiFZP is demonstrated in the ultrasound domain, with a very good agreement between the experimental measurements and the finite element method (FEM) simulations. This lens becomes an appealing alternative to other dual-focusing lenses, in which the foci location can only be set at a limited range of positions, such as M-bonacci zone plates. Moreover, the variation of the operating frequency has also been analyzed, providing an additional dynamic control parameter in this type of lenses.

5.
Sensors (Basel) ; 20(23)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260339

RESUMO

Fresnel Zone Plates are planar lenses that can be used to focus ultrasound beams. This kind of acoustic lenses can play a key role in the resolution of ultrasonic NDT systems. In this type of pulse-echo applications, the pulse duration is an important parameter that specifies the axial resolution, and thus, shorter ultrasound pulses provide higher resolutions. However, acoustic lenses exhibit a transient response that should be considered when setting the pulse duration, as pulses shorter than the transient state duration result in degradation in the response of acoustic lenses in terms of focal intensity, focal displacement, and lateral and axial resolutions. In this work, a thorough analysis of the transient response of Fresnel Zone Plates is discussed, demonstrating that the transient state should be considered in order to achieve optimal focusing performance. Theoretical and numerical results are presented, showing very good agreement.

6.
Sensors (Basel) ; 19(19)2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31590375

RESUMO

In this work, we present a thorough analysis on M-bonacci zone plates for ultrasound focusing applications. These planar lenses are capable of providing bifocal focusing profiles with equal intensity in both foci and become very appealing for a wide range of scenarios including medical and industrial applications. We show that in high-wavelength domains, such as acoustics or microwaves, the separation between both foci can be finely adjusted at the expense of slightly increasing the distortion of the focusing profile, and we introduce a design parameter to deal with this issue and simplify the design process of these lenses. Experimental measurements are in good agreement with numerical simulations and demonstrate the potential of M-bonacci lenses in ultrasound focusing applications.

7.
Sensors (Basel) ; 19(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514385

RESUMO

A method of detecting dielectric objects hidden behind an opaque barrier located on a reflective background, based on the distortion of interference fringes, is proposed in this article. Experiments conducted in the millimeter wavelength range demonstrated the effectiveness of the method under consideration, which does not require a holographic image reconstruction. Such a system can be classified as contour imaging.

8.
Sensors (Basel) ; 19(2)2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658500

RESUMO

The image performance of acoustic and ultrasound sensors depends on several fundamental parameters such as depth of focus or lateral resolution. There are currently two different types of acoustic diffractive lenses: those that form a diffraction-limited spot with a shallow depth of focus (zone plates) and lenses that form an extended focus (quasi-Bessel beams). In this paper, we investigate a pupil-masked Soret zone plate, which allows the tunability of a normalized angular spectrum. It is shown that the depth of focus and the lateral resolution can be modified, without changing the lens structure, by choosing the size of the pupil mask. This effect is based on the transformation of spherically-converging waves into quasi-conical waves, due to the apodization of the central part of the zone plate. The theoretical analysis is verified with both numerical simulations and experimental measurements. A Soret zone plate immersed in water with D/2F = 2.5 and F = 4.5 λ changes its depth of focus from 2.84 λ to 5.9 λ and the lateral resolution increases from 0.81 λ to 0.64 λ at a frequency of 250 kHz, by modifying the pupil mask dimensions of the Soret zone plate.

9.
Sensors (Basel) ; 18(8)2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096858

RESUMO

The design of zone plates is an important topic in many areas of physics, such as optics, X-rays, microwaves or ultrasonics. In this paper, a zone plate design method, which provides high flexibility in the shaping of the focusing profile, is analyzed. This flexibility is achieved through the use of binary sequences that produce zone plates with different properties and applications. It is shown that this binary-sequence method works properly at low wavelengths, but requires a modification term to work accurately in high wavelength domains. This additional term extends this powerful design method to any wavelength. Simulation results show acoustic focusing profiles for Fresnel, Fibonacci and Cantor zone plates operating at a wavelength of 1.5 mm without any distortion.

10.
Sensors (Basel) ; 17(12)2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29206137

RESUMO

The focusing properties of Fresnel Zone Plates (FZPs) against frequency are analyzed in this work. It is shown that the FZP focal length depends almost linearly on the operating frequency. Focal depth and focal distortion are also considered, establishing a limit on the frequency span at which the operating frequency can be shifted. An underwater FZP ultrasound focusing system is demonstrated, and experimental results agree with the theoretical analysis and simulations.

11.
Sensors (Basel) ; 17(7)2017 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-28737674

RESUMO

The focusing capabilities of a pinhole zone plate lens are presented and compared with those of a conventional Fresnel zone plate lens. The focusing properties are examined both experimentally and numerically. The results confirm that a pinhole zone plate lens can be an alternative to a Fresnel lens. A smooth filtering effect is created in pinhole zone plate lenses, giving rise to a reduction of the side lobes around the principal focus associated with the conventional Fresnel zone plate lens. The manufacturing technique of the pinhole zone plate lens allows the designing and constructing of lenses for different focal lengths quickly and economically and without the need to drill new plates.

12.
Sensors (Basel) ; 14(5): 8821-8, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24854059

RESUMO

The lensing capabilities of a single subwavelength slit surrounded by a finite array of grooves milled into a brass plate is presented. The modulation of the beam intensity of this ultrasonic lens can be adjusted by varying the groove depth. Numerical simulations as well as experimental validations at 290 kHz are shown. The experimental results are in good agreement with the numerical simulations. This system is believed to have potential applications for medical ultrasound fields such as tomography and therapy.


Assuntos
Ultrassom/instrumentação , Ultrassom/métodos , Simulação por Computador , Desenho de Equipamento , Lentes
13.
Sci Rep ; 11(1): 13458, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188107

RESUMO

Ultrasound focusing is a hot topic due to its multiple applications in many fields, including biomedical imaging, thermal ablation of cancerous tissues, and non destructive testing in industrial environments. In such applications, the ability to control the focal distance of the ultrasound device in real-time is a key advantage over conventional devices with fixed focal parameters. Here, we present a method to achieve multiple time-modulated ultrasound foci using a single planar monofocal Fresnel Zone Plate. The method takes advantage of the focal distance linear dependence on the operating frequency of this kind of lenses to design a sequence of contiguous modulated rectangular pulses that achieve different focal distances and intensities as a function of time. Both numerical simulations and experimental results are presented, demonstrating the feasibility and potential of this technique.

14.
Ultrasonics ; 99: 105967, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31374429

RESUMO

In this work, we demonstrate the application of Cantor fractal lenses in acoustics. The Cantor Zone Plate (CZP), previously introduced in optics, is designed from a conventional Fresnel Zone Plate (FZP) using a binary sequence governed by the distribution of a generalized Cantor set. The CZP maintains its main focus at the same focal distance than its associated FZP, providing a softer multi-foci focusing profile which is very useful in certain ultrasound therapeutic applications. Experimental measurements are in good agreement with the theoretical model, demonstrating that CZPs are suitable for the ultrasound field.

15.
Sci Rep ; 9(1): 7067, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068613

RESUMO

The development of flat acoustic lenses for different applications such as biomedical engineering is a topic of great interest. Flat lenses like Fresnel Zone Plates (FZPs) are capable of focusing energy beams without the need of concave or convex geometries, which are more difficult to manufacture. One of the possible applications of these type of lenses is tumor ablation through High Intensity Focused Ultrasound (HIFU) therapies with real time Magnetic Resonance Imaging (MRI) monitoring. In order to be MRI compatible, the FZP material cannot have electromagnetic interaction. In this work, a Phase-Reversal FZP (PR-FZP) made of Polylactic Acid (PLA) manufactured with a commercial 3D printer is proposed as a better, more efficient and MRI compatible alternative to conventional Soret FZPs. Phase-Reversal lenses, unlike traditional FZPs, take advantage of all the incident energy by adding phase compensation regions instead of pressure blocking regions. The manufactured PR-FZP achieves 21.9 dB of focal gain, which increases the gain compared to a Soret FZP of its same size by a factor of 4.0 dB. Both numerical and experimental results are presented, demonstrating the improved focusing capabilities of these types of lenses.

16.
Sci Rep ; 9(1): 13363, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527645

RESUMO

In this work, we present a configurable spherical lens for underwater focusing applications, which consists on a hollow ABS container filled with a liquid mixture. Two miscible liquids with different sound speeds are required to implement this novel configurable lens. We show that by adjusting the mixing ratio between the volumes of both liquids, the sound speed of the liquid mixture can be accurately selected. This results in a modification of the acoustic jet properties and a continuous tuning on the lens focal length. This procedure can be fully automatized providing a dynamic control mechanism that can shift the lens focal length to any desired value inside a continuous range in both directions. Depending on the acoustic properties of the selected liquids, subwavelength resolution or even beyond the diffraction limit resolution can be achieved. We provide experimental measurements for ethanol-water mixtures achieving subwavelength resolution for a certain focal length ranging between 34.6 and 42.8 mm.

17.
Ultrasonics ; 94: 281-284, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30190134

RESUMO

The Talbot effect using ultrasonic waves transmitted through a periodic perforated plate is presented. The ultrasonic wave-field at the exit of the perforated plate replicates the perforated pattern at the Talbot distance. Experimental results are validated by an analytical model. The measured propagating wave-field is consistent with the analytical results. The influence of the grating size and the filling fraction on the Talbot effect are also studied, and it is found that both parameters affect the formation of Talbot images.

18.
Ultrasonics ; 91: 237-241, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30126723

RESUMO

The manipulation of focal patterns of acoustic underwater Soret Zone Plate lens in far fields, such as manipulation (optimization) of Sidelobe Level and the design of long depth of focus by selecting the simple free parameter called reference radius (phase) has been demonstrated.Two effects have been studied by means of numerical simulations. Regarding the first effect, simulations demonstrate diffraction limited focal spot (0.47 wavelength) and 3 dB reduction of the first Side Lobe Level using Soret ZP with an optimal reference radius and without causing neither main lobe broadening or gain reduction. In the second effect, by using numerical simulations an increasing of depth of focus, more than 2 times, in comparison with classical Soret ZP with high numerical aperture (F/D = 2.5), was observed.

19.
Materials (Basel) ; 10(11)2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29112133

RESUMO

In recent years, natural materials are becoming a valid alternative to traditional sound absorbers due to reduced production costs and environmental protection. This paper reports the acoustical characterization of sheep wool. Measurements on normal incidence and diffuse-incidence sound absorption coefficients of different samples are reported. The airflow resistance has also been measured. The results prove that sheep wool has a comparable sound absorption performance to that of mineral wool or recycled polyurethane foam. An empirical model is used to calculate the sound absorption of sheep wool samples. A reasonable agreement on the acoustic absorption of all sheep wool samples is obtained.

20.
Materials (Basel) ; 9(6)2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28773575

RESUMO

Underwater ultrasonic transmissions for fluid-solid and air-solid phononic brass plates are reported in this work. Although the structure is roughly the same, experimental results show very different behaviour between fluid-solid and air-solid phononic plates, due to most of the properties of the fluid-solid perforated plates rely on Fabry-Perot resonances, Wood anomalies and Lamb modes. In air-solid phononic plates Fabry-Perot resonance is highly attenuated due to impedances difference between air and water, and therefore some transmission modes are now distinguishable due to surface modes coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA