Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neuron ; 16(5): 1019-26, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-8630240

RESUMO

Phosphorylation of brain Na+ channels by protein kinase C (PKC) decreases peak Na+ current and slows macroscopic inactivation, but receptor-activated modulation of Na+ currents via the PKC pathway has not been demonstrated. We have examined modulation of Na+ channels by activation of muscarinic receptors in acutely-isolated hippocampal neurons using whole-cell voltage-clamp recording. Application of the muscarinic agonist carbachol reduced peak Na+ current and slowed macroscopic inactivation at all potentials, without changing the voltage-dependent properties of the channel. These effects were mediated by PKC, since they were eliminated when the specific PKC inhibitor (PKCI19-36) was included in the pipette solution and mimicked by the extracellular application of the PKC activator, OAG. Thus, activation of endogenous muscarinic receptors on hippocampal neurons strongly modulates Na+ channel activity by activation of PKC. Cholinergic input from basal forebrain neurons may have this effect in the hippocampus in vivo.


Assuntos
Hipocampo/fisiologia , Ativação do Canal Iônico , Proteína Quinase C/fisiologia , Receptores Muscarínicos/fisiologia , Canais de Sódio/fisiologia , Animais , Carbacol/farmacologia , Ativação Enzimática , Masculino , Fosforilação , Ratos , Sódio/fisiologia
2.
J Neurosci ; 19(17): RC21, 1999 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10460275

RESUMO

Activation of D1-like dopamine (DA) receptors reduces peak Na(+) current in acutely isolated hippocampal neurons via a modulatory mechanism involving phosphorylation of the Na(+) channel alpha subunit by cAMP-dependent protein kinase (PKA). Peak Na(+) current is reduced 20-50% in the presence of the D1 agonist SKF 81297 or the PKA activator Sp-5,6-dichloro-l-beta-d-ribofuranosyl benzimidazole-3',5'-cyclic monophosphorothionate (cBIMPS). Co-immunoprecipitation experiments show that Na(+) channels are associated with PKA and A-kinase-anchoring protein 15 (AKAP-15), and immunocytochemical labeling reveals their co-localization in the cell bodies and proximal dendrites of hippocampal pyramidal neurons. Anchoring of PKA near the channel by an AKAP, which binds the RII alpha regulatory subunit, is necessary for Na(+) channel modulation in acutely dissociated hippocampal pyramidal neurons. Intracellular dialysis with the anchoring inhibitor peptides Ht31 from a human thyroid AKAP and AP2 from AKAP-15 eliminated the modulation of the Na(+) channel by the D1-agonist SKF 81297 and the PKA activator cBIMPS. In contrast, dialysis with the inactive proline-substituted control peptides Ht31-P and AP2-P had little effect on the D1 and PKA modulation. Therefore, we conclude that modulation of the Na(+) channel by activation of D1-like DA receptors requires targeted localization of PKA near the channel to achieve phosphorylation of the alpha subunit and to modify the functional properties of the channel.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipocampo/metabolismo , Ativação do Canal Iônico , Proteínas de Membrana/metabolismo , Receptores de Dopamina D1/fisiologia , Canais de Sódio/fisiologia , Proteínas de Ancoragem à Quinase A , Animais , Ativação Enzimática , Hipocampo/citologia , Hipocampo/enzimologia , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Fosforilação , Testes de Precipitina , Células Piramidais/enzimologia , Células Piramidais/metabolismo , Ratos
3.
Nat Rev Neurosci ; 2(6): 397-407, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11389473

RESUMO

Voltage-gated Na+ channels set the threshold for action potential generation and are therefore good candidates to mediate forms of plasticity that affect the entire neuronal output. Although early studies led to the idea that Na+ channels were not subject to modulation, we now know that Na+ channel function is affected by phosphorylation. Furthermore, Na+ channel modulation is implicated in the control of input-output relationships in several types of neuron and seems to be involved in phenomena as varied as cocaine withdrawal, hyperalgesia and light adaptation. Here we review the available evidence for the regulation of Na+ channels by phosphorylation, its molecular mechanism, and the possible ways in which it affects neuronal function.


Assuntos
Potenciais de Ação/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Canais de Sódio/metabolismo , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Humanos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Fosforilação , Canais de Sódio/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
4.
J Neurosci ; 19(13): 5301-10, 1999 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-10377341

RESUMO

Activation of D1-like dopamine (DA) receptors reduces peak Na+ current in acutely isolated hippocampal neurons through phosphorylation of the alpha subunit of the Na+ channel by cAMP-dependent protein kinase (PKA). Here we report that neuromodulation of Na+ currents by DA receptors via PKA is voltage-dependent in the range of -110 to -70 mV and is also sensitive to concurrent activation of protein kinase C (PKC). Depolarization enhanced the ability of D1-like DA receptors to reduce peak Na+ currents via the PKA pathway. Similar voltage-dependent modulation was observed when PKA was activated directly with the membrane-permeant PKA activator DCl-cBIMPS (cBIMPS; 20 microM), indicating that the membrane potential dependence occurs downstream of PKA. PKA activation caused only a small (-2.9 mV) shift in the voltage dependence of steady-state inactivation and had no effect on slow inactivation or on the rates of entry into the fast or slow inactivated states, suggesting that another mechanism is responsible for coupling of membrane potential changes to PKA modulation. Activation of PKC with a low concentration of the membrane-permeant diacylglycerol analog oleylacetyl glycerol also potentiated modulation by SKF 81297 or cBIMPS, and these effects were most striking at hyperpolarized membrane potentials where PKA modulation was not stimulated by membrane depolarization. Thus, activation of D1-like DA receptors causes a strong reduction in Na+ current via the PKA pathway, but it is effective primarily when it is combined with depolarization or activation of PKC. The convergence of these three distinct signaling modalities on the Na+ channel provides an intriguing mechanism for integration of information from multiple signaling pathways in the hippocampus and CNS.


Assuntos
Ativação do Canal Iônico , Células Piramidais/fisiologia , Receptores de Dopamina D1/fisiologia , Canais de Sódio/fisiologia , Animais , Benzazepinas/farmacologia , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Difosfonatos/farmacologia , Agonistas de Dopamina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/enzimologia , Células Piramidais/metabolismo , Ratos , Receptores de Dopamina D1/agonistas , Sódio/metabolismo , Canais de Sódio/genética
5.
Proc Natl Acad Sci U S A ; 95(23): 13947-52, 1998 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-9811906

RESUMO

The voltage-gated sodium channel is the site of action of more than six classes of neurotoxins and drugs that alter its function by interaction with distinct, allosterically coupled receptor sites. Batrachotoxin (BTX) is a steroidal alkaloid that binds to neurotoxin receptor site 2 and causes persistent activation. BTX binding is inhibited allosterically by local anesthetics. We have investigated the interaction of BTX with amino acid residues I1760, F1764, and Y1771, which form part of local anesthetic receptor site in transmembrane segment IVS6 of type IIA sodium channels. Alanine substitution for F1764 (mutant F1764A) reduces tritiated BTX-A-20-alpha-benzoate binding affinity, causing a 60-fold increase in Kd. Alanine substitution for I1760, which is adjacent to F1764 in the predicted IVS6 transmembrane alpha helix, causes only a 4-fold increase in Kd. In contrast, mutant Y1771A shows no change in BTX binding affinity. For wild-type and mutant Y1771A, BTX shifted the voltage for half-maximal activation approximately 40 mV in the hyperpolarizing direction and increased the percentage of noninactivating sodium current to approximately 60%. In contrast, these BTX effects were eliminated completely for the F1764A mutant and were reduced substantially for mutant I1760A. Our data suggest that the BTX receptor site shares overlapping but nonidentical molecular determinants with the local anesthetic receptor site in transmembrane segment IVS6 as well as having unique molecular determinants in transmembrane segment IS6, as demonstrated in previous work. Evidently, BTX conforms to a domain-interface allosteric model of ligand binding and action, as previously proposed for calcium agonist and antagonist drugs acting on L-type calcium channels.


Assuntos
Batraquiotoxinas/farmacologia , Canais de Sódio/fisiologia , Células Cultivadas , Eletrofisiologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Sódio/fisiologia , Agonistas de Canais de Sódio , Transfecção
6.
J Neurosci ; 17(19): 7330-8, 1997 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-9295379

RESUMO

Phosphorylation of brain Na+ channel alpha subunits by cAMP-dependent protein kinase (PKA) decreases peak Na+ current in cultured brain neurons and in mammalian cells and Xenopus oocytes expressing cloned brain Na+ channels. We have studied PKA regulation of Na+ channel function by activation of D1-like dopamine receptors in acutely isolated hippocampal neurons using whole-cell voltage-clamp recording techniques. The D1 agonist SKF 81297 reversibly reduced peak Na+ current in a concentration-dependent manner. No changes in the voltage dependence or kinetics of activation or inactivation were observed. This effect was mediated by PKA, as it was mimicked by application of the PKA activator Sp-5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole-3', 5'-monophosphorothioate(cBIMPS) and was inhibited by the specific PKA inhibitor peptide PKAI5-24. cBIMPS had similar effects on type IIA brain Na+ channel alpha subunits expressed in tsA-201 cells, but no effect was observed on a mutant Na+ channel alpha subunit in which serine residues in five PKA phosphorylation sites in the intracellular loop connecting domains I and II (LI-II) had been replaced by alanine. A single mutation, S573A, similarly eliminated cBIMPS modulation. Thus, activation of D1-like dopamine receptors results in PKA-dependent phosphorylation of specific sites in LI-II of the Na+ channel alpha subunit, causing a reduction in Na+ current. Such modulation is expected to exert a profound influence on overall neuronal excitability. Dopaminergic input to the hippocampus from the mesocorticolimbic system may exert this influence in vivo.


Assuntos
AMP Cíclico/fisiologia , Dopamina/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Canais de Sódio/metabolismo , Sódio/fisiologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Condutividade Elétrica , Hipocampo/citologia , Masculino , Fosforilação , Ratos , Receptores de Dopamina D1/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA