Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(5): 545-564, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36744494

RESUMO

OBJECTIVE: Mutations in BMPR2 (bone morphogenetic protein receptor 2) are associated with familial and sporadic pulmonary arterial hypertension (PAH). The functional and molecular link between loss of BMPR2 in pulmonary artery smooth muscle cells (PASMC) and PAH pathogenesis warrants further investigation, as most investigations focus on BMPR2 in pulmonary artery endothelial cells. Our goal was to determine whether and how decreased BMPR2 is related to the abnormal phenotype of PASMC in PAH. METHODS: SMC-specific Bmpr2-/- mice (BKOSMC) were created and compared to controls in room air, after 3 weeks of hypoxia as a second hit, and following 4 weeks of normoxic recovery. Echocardiography, right ventricular systolic pressure, and right ventricular hypertrophy were assessed as indices of pulmonary hypertension. Proliferation, contractility, gene and protein expression of PASMC from BKOSMC mice, human PASMC with BMPR2 reduced by small interference RNA, and PASMC from PAH patients with a BMPR2 mutation were compared to controls, to investigate the phenotype and underlying mechanism. RESULTS: BKOSMC mice showed reduced hypoxia-induced vasoconstriction and persistent pulmonary hypertension following recovery from hypoxia, associated with sustained muscularization of distal pulmonary arteries. PASMC from mutant compared to control mice displayed reduced contractility at baseline and in response to angiotensin II, increased proliferation and apoptosis resistance. Human PASMC with reduced BMPR2 by small interference RNA, and PASMC from PAH patients with a BMPR2 mutation showed a similar phenotype related to upregulation of pERK1/2 (phosphorylated extracellular signal related kinase 1/2)-pP38-pSMAD2/3 mediating elevation in ARRB2 (ß-arrestin2), pAKT (phosphorylated protein kinase B) inactivation of GSK3-beta, CTNNB1 (ß-catenin) nuclear translocation and reduction in RHOA (Ras homolog family member A) and RAC1 (Ras-related C3 botulinum toxin substrate 1). Decreasing ARRB2 in PASMC with reduced BMPR2 restored normal signaling, reversed impaired contractility and attenuated heightened proliferation and in mice with inducible loss of BMPR2 in SMC, decreasing ARRB2 prevented persistent pulmonary hypertension. CONCLUSIONS: Agents that neutralize the elevated ARRB2 resulting from loss of BMPR2 in PASMC could prevent or reverse the aberrant hypocontractile and hyperproliferative phenotype of these cells in PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Humanos , Camundongos , beta-Arrestina 2/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/metabolismo , RNA/metabolismo
2.
Am J Respir Crit Care Med ; 209(2): 206-218, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37934691

RESUMO

Rationale: Unraveling immune-driven vascular pathology in pulmonary arterial hypertension (PAH) requires a comprehensive understanding of the immune cell landscape. Although patients with hereditary (H)PAH and bone morphogenetic protein receptor type 2 (BMPR2) mutations have more severe pulmonary vascular pathology, it is not known whether this is related to specific immune cell subsets. Objectives: This study aims to elucidate immune-driven vascular pathology by identifying immune cell subtypes linked to severity of pulmonary arterial lesions in PAH. Methods: We used cutting-edge multiplexed ion beam imaging by time of flight to compare pulmonary arteries (PAs) and adjacent tissue in PAH lungs (idiopathic [I]PAH and HPAH) with unused donor lungs, as controls. Measurements and Main Results: We quantified immune cells' proximity and abundance, focusing on those features linked to vascular pathology, and evaluated their impact on pulmonary arterial smooth muscle cells (SMCs) and endothelial cells. Distinct immune infiltration patterns emerged between PAH subtypes, with intramural involvement independently linked to PA occlusive changes. Notably, we identified monocyte-derived dendritic cells within PA subendothelial and adventitial regions, influencing vascular remodeling by promoting SMC proliferation and suppressing endothelial gene expression across PAH subtypes. In patients with HPAH, pronounced immune dysregulation encircled PA walls, characterized by heightened perivascular inflammation involving T cell immunoglobulin and mucin domain-3 (TIM-3)+ T cells. This correlated with an expanded DC subset expressing indoleamine 2,3-dioxygenase 1, TIM-3, and SAM and HD domain-containing deoxynucleoside triphosphate triphosphohydrolase 1, alongside increased neutrophils, SMCs, and alpha-smooth muscle actin (ACTA2)+ endothelial cells, reinforcing the heightened severity of pulmonary vascular lesions. Conclusions: This study presents the first architectural map of PAH lungs, connecting immune subsets not only with specific PA lesions but also with heightened severity in HPAH compared with IPAH. Our findings emphasize the therapeutic potential of targeting monocyte-derived dendritic cells, neutrophils, cellular interactions, and immune responses to alleviate severe vascular pathology in IPAH and HPAH.


Assuntos
Hidralazina/análogos & derivados , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/genética , Artéria Pulmonar , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Proliferação de Células , Hidrazonas
3.
Circ Res ; 128(3): 401-418, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33322916

RESUMO

RATIONALE: In pulmonary arterial hypertension (PAH), endothelial dysfunction and obliterative vascular disease are associated with DNA damage and impaired signaling of BMPR2 (bone morphogenetic protein type 2 receptor) via two downstream transcription factors, PPARγ (peroxisome proliferator-activated receptor gamma), and p53. OBJECTIVE: We investigated the vasculoprotective and regenerative potential of a newly identified PPARγ-p53 transcription factor complex in the pulmonary endothelium. METHODS AND RESULTS: In this study, we identified a pharmacologically inducible vasculoprotective mechanism in pulmonary arterial and lung MV (microvascular) endothelial cells in response to DNA damage and oxidant stress regulated in part by a BMPR2 dependent transcription factor complex between PPARγ and p53. Chromatin immunoprecipitation sequencing and RNA-sequencing established an inducible PPARγ-p53 mediated regenerative program regulating 19 genes involved in lung endothelial cell survival, angiogenesis and DNA repair including, EPHA2 (ephrin type-A receptor 2), FHL2 (four and a half LIM domains protein 2), JAG1 (jagged 1), SULF2 (extracellular sulfatase Sulf-2), and TIGAR (TP53-inducible glycolysis and apoptosis regulator). Expression of these genes was partially impaired when the PPARγ-p53 complex was pharmacologically disrupted or when BMPR2 was reduced in pulmonary artery endothelial cells (PAECs) subjected to oxidative stress. In endothelial cell-specific Bmpr2-knockout mice unable to stabilize p53 in endothelial cells under oxidative stress, Nutlin-3 rescued endothelial p53 and PPARγ-p53 complex formation and induced target genes, such as APLN (apelin) and JAG1, to regenerate pulmonary microvessels and reverse pulmonary hypertension. In PAECs from BMPR2 mutant PAH patients, pharmacological induction of p53 and PPARγ-p53 genes repaired damaged DNA utilizing genes from the nucleotide excision repair pathway without provoking PAEC apoptosis. CONCLUSIONS: We identified a novel therapeutic strategy that activates a vasculoprotective gene regulation program in PAECs downstream of dysfunctional BMPR2 to rehabilitate PAH PAECs, regenerate pulmonary microvessels, and reverse disease. Our studies pave the way for p53-based vasculoregenerative therapies for PAH by extending the therapeutic focus to PAEC dysfunction and to DNA damage associated with PAH progression.


Assuntos
Indutores da Angiogênese/farmacologia , Células Endoteliais/efeitos dos fármacos , Imidazóis/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , PPAR gama/metabolismo , Piperazinas/farmacologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Artéria Pulmonar/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , Estresse Oxidativo , PPAR gama/genética , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
4.
Med Sci Monit ; 29: e941553, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37846048

RESUMO

BACKGROUND Cardiocerebral vascular events (CVCs) are significant complications in patients undergoing hemodialysis (HD). Given the increased morbidity and mortality associated with CVCs in this population, understanding the factors influencing CVC occurrence over time is crucial. This study aimed to investigate these time-dependent factors in HD patients. MATERIAL AND METHODS A total of 228 HD patients from 2 dialysis centers, with at least 3 months of treatment between 2017 and 2021, were included. Annual clinical data were collected, and patients were monitored until CVC development. Kaplan-Meier analysis and a time-dependent Cox regression model were used for data analysis. RESULTS The mean age of 228 patients was 55.0±15.0 years, and 64.76% were male. For 5 years of monitoring, the mean follow-up interval was 3.1±1.0 years for patients to develop CVCs. The 1-year, 3-year, and 5-year CVC-free rates were 97.47%, 81.31%, and 70.71%, respectively. Time-dependent Cox regression revealed that C-reactive protein was an independent time-dependent risk factor in HD patients and blood flow rate was an independent time-dependent protective factor. The male subgroup and non-diabetic subgroup had these same results. The following were was the independent time-dependent risk factors: white blood cell count for the female subgroup; blood flow rate for the non-elderly subgroup; and C-reactive protein for the diabetic subgroup. None were risk factors for the elderly subgroup. CONCLUSIONS It took an average of 3.1±1.0 years for patients with HD to develop CVCs. C-reactive protein and blood flow rate emerged as key time-dependent influencing factors for CVCs in this population.


Assuntos
Proteína C-Reativa , Falência Renal Crônica , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Longitudinais , Diálise Renal/métodos , Fatores de Risco , Modelos de Riscos Proporcionais , Falência Renal Crônica/terapia
5.
Am J Respir Crit Care Med ; 206(8): 1019-1034, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696338

RESUMO

Rationale: The role of neutrophils and their extracellular vesicles (EVs) in the pathogenesis of pulmonary arterial hypertension is unclear. Objectives: To relate functional abnormalities in pulmonary arterial hypertension neutrophils and their EVs to mechanisms uncovered by proteomic and transcriptomic profiling. Methods: Production of elastase, release of extracellular traps, adhesion, and migration were assessed in neutrophils from patients with pulmonary arterial hypertension and control subjects. Proteomic analyses were applied to explain functional perturbations, and transcriptomic data were used to find underlying mechanisms. CD66b-specific neutrophil EVs were isolated from plasma of patients with pulmonary arterial hypertension, and we determined whether they produce pulmonary hypertension in mice. Measurements and Main Results: Neutrophils from patients with pulmonary arterial hypertension produce and release increased neutrophil elastase, associated with enhanced extracellular traps. They exhibit reduced migration and increased adhesion attributed to elevated ß1-integrin and vinculin identified by proteomic analysis and previously linked to an antiviral response. This was substantiated by a transcriptomic IFN signature that we related to an increase in human endogenous retrovirus K envelope protein. Transfection of human endogenous retrovirus K envelope in a neutrophil cell line (HL-60) increases neutrophil elastase and IFN genes, whereas vinculin is increased by human endogenous retrovirus K deoxyuridine triphosphate diphosphatase that is elevated in patient plasma. Neutrophil EVs from patient plasma contain increased neutrophil elastase and human endogenous retrovirus K envelope and induce pulmonary hypertension in mice, mitigated by elafin, an elastase inhibitor. Conclusions: Elevated human endogenous retroviral elements and elastase link a neutrophil innate immune response to pulmonary arterial hypertension.


Assuntos
Retrovirus Endógenos , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Antivirais , Elafina/genética , Elafina/metabolismo , Elafina/farmacologia , Retrovirus Endógenos/metabolismo , Hipertensão Pulmonar Primária Familiar/genética , Humanos , Hipertensão Pulmonar/genética , Integrinas/genética , Integrinas/metabolismo , Elastase de Leucócito/metabolismo , Camundongos , Neutrófilos/metabolismo , Proteômica , Vinculina/genética , Vinculina/metabolismo
6.
Circ Res ; 124(2): 211-224, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30582451

RESUMO

RATIONALE: Maintaining endothelial cells (EC) as a monolayer in the vessel wall depends on their metabolic state and gene expression profile, features influenced by contact with neighboring cells such as pericytes and smooth muscle cells (SMC). Failure to regenerate a normal EC monolayer in response to injury can result in occlusive neointima formation in diseases such as atherosclerosis and pulmonary arterial hypertension. OBJECTIVE: We investigated the nature and functional importance of contact-dependent communication between SMC and EC to maintain EC integrity. METHODS AND RESULTS: We found that in SMC and EC contact cocultures, BMPR2 (bone morphogenetic protein receptor 2) is required by both cell types to produce collagen IV to activate ILK (integrin-linked kinase). This enzyme directs p-JNK (phospho-c-Jun N-terminal kinase) to the EC membrane, where it stabilizes presenilin1 and releases N1ICD (Notch1 intracellular domain) to promote EC proliferation. This response is necessary for EC regeneration after carotid artery injury. It is deficient in EC-SMC Bmpr2 double heterozygous mice in association with reduced collagen IV production, decreased N1ICD, and attenuated EC proliferation, but can be rescued by targeting N1ICD to EC. Deletion of EC- Notch1 in transgenic mice worsens hypoxia-induced pulmonary hypertension, in association with impaired EC regenerative function associated with loss of precapillary arteries. We further determined that N1ICD maintains EC proliferative capacity by increasing mitochondrial mass and by inducing the phosphofructokinase PFKFB3 (fructose-2,6-bisphosphatase 3). Chromatin immunoprecipitation sequencing analyses showed that PFKFB3 is required for citrate-dependent H3K27 acetylation at enhancer sites of genes regulated by the acetyl transferase p300 and by N1ICD or the N1ICD target MYC and necessary for EC proliferation and homeostasis. CONCLUSIONS: Thus, SMC-EC contact is required for activation of Notch1 by BMPR2, to coordinate metabolism with chromatin remodeling of genes that enable EC regeneration, and to maintain monolayer integrity and vascular homeostasis in response to injury.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Lesões das Artérias Carótidas/metabolismo , Comunicação Celular , Proliferação de Células , Células Endoteliais/metabolismo , Metabolismo Energético , Epigênese Genética , Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptor Notch1/metabolismo , Adulto , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/deficiência , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Células Cultivadas , Montagem e Desmontagem da Cromatina , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Receptor Notch1/deficiência , Receptor Notch1/genética , Transdução de Sinais , Remodelação Vascular , Adulto Jovem
7.
Circulation ; 140(17): 1409-1425, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31462075

RESUMO

BACKGROUND: Bmpr2 (bone morphogenetic protein receptor 2) mutations are critical risk factors for hereditary pulmonary arterial hypertension (PAH) with approximately 20% of carriers developing disease. There is an unmet medical need to understand how environmental factors, such as inflammation, render Bmpr2 mutants susceptible to PAH. Overexpressing 5-LO (5-lipoxygenase) provokes lung inflammation and transient PAH in Bmpr2+/- mice. Accordingly, 5-LO and its metabolite, leukotriene B4, are candidates for the second hit. The purpose of this study was to determine how 5-LO-mediated pulmonary inflammation synergized with phenotypically silent Bmpr2 defects to elicit significant pulmonary vascular disease in rats. METHODS: Monoallelic Bmpr2 mutant rats were generated and found phenotypically normal for up to 1 year of observation. To evaluate whether a second hit would elicit disease, animals were exposed to 5-LO-expressing adenovirus, monocrotaline, SU5416, SU5416 with chronic hypoxia, or chronic hypoxia alone. Bmpr2-mutant hereditary PAH patient samples were assessed for neointimal 5-LO expression. Pulmonary artery endothelial cells with impaired BMPR2 signaling were exposed to increased 5-LO-mediated inflammation and were assessed for phenotypic and transcriptomic changes. RESULTS: Lung inflammation, induced by intratracheal delivery of 5-LO-expressing adenovirus, elicited severe PAH with intimal remodeling in Bmpr2+/- rats but not in their wild-type littermates. Neointimal lesions in the diseased Bmpr2+/- rats gained endogenous 5-LO expression associated with elevated leukotriene B4 biosynthesis. Bmpr2-mutant hereditary PAH patients similarly expressed 5-LO in the neointimal cells. In vitro, BMPR2 deficiency, compounded by 5-LO-mediated inflammation, generated apoptosis-resistant and proliferative pulmonary artery endothelial cells with mesenchymal characteristics. These transformed cells expressed nuclear envelope-localized 5-LO consistent with induced leukotriene B4 production, as well as a transcriptomic signature similar to clinical disease, including upregulated nuclear factor Kappa B subunit (NF-κB), interleukin-6, and transforming growth factor beta (TGF-ß) signaling pathways. The reversal of PAH and vasculopathy in Bmpr2 mutants by TGF-ß antagonism suggests that TGF-ß is critical for neointimal transformation. CONCLUSIONS: In a new 2-hit model of disease, lung inflammation induced severe PAH pathology in Bmpr2+/- rats. Endothelial transformation required the activation of canonical and noncanonical TGF-ß signaling pathways and was characterized by 5-LO nuclear envelope translocation with enhanced leukotriene B4 production. This study offers an explanation of how an environmental injury unleashes the destructive potential of an otherwise silent genetic mutation.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Inflamação/metabolismo , Neointima/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Animais , Células Endoteliais/metabolismo , Hipertensão Pulmonar/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos Transgênicos , Transdução de Sinais/fisiologia
8.
Plant Physiol ; 176(4): 2943-2962, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29475899

RESUMO

Phosphate starvation-mediated induction of the HAD-type phosphatases PPsPase1 (AT1G73010) and PECP1 (AT1G17710) has been reported in Arabidopsis (Arabidopsis thaliana). However, little is known about their in vivo function or impact on plant responses to nutrient deficiency. The preferences of PPsPase1 and PECP1 for different substrates have been studied in vitro but require confirmation in planta. Here, we examined the in vivo function of both enzymes using a reverse genetics approach. We demonstrated that PPsPase1 and PECP1 affect plant phosphocholine and phosphoethanolamine content, but not the pyrophosphate-related phenotypes. These observations suggest that the enzymes play a similar role in planta related to the recycling of polar heads from membrane lipids that is triggered during phosphate starvation. Altering the expression of the genes encoding these enzymes had no effect on lipid composition, possibly due to compensation by other lipid recycling pathways triggered during phosphate starvation. Furthermore, our results indicated that PPsPase1 and PECP1 do not influence phosphate homeostasis, since the inactivation of these genes had no effect on phosphate content or on the induction of molecular markers related to phosphate starvation. A combination of transcriptomics and imaging analyses revealed that PPsPase1 and PECP1 display a highly dynamic expression pattern that closely mirrors the phosphate status. This temporal dynamism, combined with the wide range of induction levels, broad expression, and lack of a direct effect on Pi content and regulation, makes PPsPase1 and PECP1 useful molecular markers of the phosphate starvation response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Etanolaminas/metabolismo , Pirofosfatase Inorgânica/metabolismo , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilcolina/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Homeostase , Pirofosfatase Inorgânica/genética , Lipídeos de Membrana/metabolismo , Mutação , Monoéster Fosfórico Hidrolases/genética
9.
Circulation ; 136(20): 1920-1935, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-28935667

RESUMO

BACKGROUND: Immune dysregulation has been linked to occlusive vascular remodeling in pulmonary arterial hypertension (PAH) that is hereditary, idiopathic, or associated with other conditions. Circulating autoantibodies, lung perivascular lymphoid tissue, and elevated cytokines have been related to PAH pathogenesis but without a clear understanding of how these abnormalities are initiated, perpetuated, and connected in the progression of disease. We therefore set out to identify specific target antigens in PAH lung immune complexes as a starting point toward resolving these issues to better inform future application of immunomodulatory therapies. METHODS: Lung immune complexes were isolated and PAH target antigens were identified by liquid chromatography tandem mass spectrometry, confirmed by enzyme-linked immunosorbent assay, and localized by confocal microscopy. One PAH antigen linked to immunity and inflammation was pursued and a link to PAH pathophysiology was investigated by next-generation sequencing, functional studies in cultured monocytes and endothelial cells, and hemodynamic and lung studies in a rat. RESULTS: SAM domain and HD domain-containing protein 1 (SAMHD1), an innate immune factor that suppresses HIV replication, was identified and confirmed as highly expressed in immune complexes from 16 hereditary and idiopathic PAH versus 12 control lungs. Elevated SAMHD1 was localized to endothelial cells, perivascular dendritic cells, and macrophages, and SAMHD1 antibodies were prevalent in tertiary lymphoid tissue. An unbiased screen using metagenomic sequencing related SAMHD1 to increased expression of human endogenous retrovirus K (HERV-K) in PAH versus control lungs (n=4). HERV-K envelope and deoxyuridine triphosphate nucleotidohydrolase mRNAs were elevated in PAH versus control lungs (n=10), and proteins were localized to macrophages. HERV-K deoxyuridine triphosphate nucleotidohydrolase induced SAMHD1 and proinflammatory cytokines (eg, interleukin 6, interleukin 1ß, and tumor necrosis factor α) in circulating monocytes, pulmonary arterial endothelial cells, and also activated B cells. Vulnerability of pulmonary arterial endothelial cells (PAEC) to apoptosis was increased by HERV-K deoxyuridine triphosphate nucleotidohydrolase in an interleukin 6-independent manner. Furthermore, 3 weekly injections of HERV-K deoxyuridine triphosphate nucleotidohydrolase induced hemodynamic and vascular changes of pulmonary hypertension in rats (n=8) and elevated interleukin 6. CONCLUSIONS: Our study reveals that upregulation of the endogenous retrovirus HERV-K could both initiate and sustain activation of the immune system and cause vascular changes associated with PAH.


Assuntos
Hipertensão Pulmonar/imunologia , Mediadores da Inflamação/imunologia , Regulação para Cima/fisiologia , Proteínas Virais/biossíntese , Proteínas Virais/imunologia , Adolescente , Adulto , Animais , Complexo Antígeno-Anticorpo/biossíntese , Complexo Antígeno-Anticorpo/imunologia , Células Cultivadas , Criança , Técnicas de Cocultura , Feminino , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Lactente , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Proteína 1 com Domínio SAM e Domínio HD/biossíntese , Proteína 1 com Domínio SAM e Domínio HD/imunologia , Adulto Jovem
10.
Arterioscler Thromb Vasc Biol ; 37(8): 1559-1569, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28619995

RESUMO

OBJECTIVE: We determined in patients with pulmonary arterial (PA) hypertension (PAH) whether in addition to increased production of elastase by PA smooth muscle cells previously reported, PA elastic fibers are susceptible to degradation because of their abnormal assembly. APPROACH AND RESULTS: Fibrillin-1 and elastin are the major components of elastic fibers, and fibrillin-1 binds bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-ß1 (TGFß1). Thus, we considered whether BMPs like TGFß1 contribute to elastic fiber assembly and whether this process is perturbed in PAH particularly when the BMP receptor, BMPR2, is mutant. We also assessed whether in mice with Bmpr2/1a compound heterozygosity, elastic fibers are susceptible to degradation. In PA smooth muscle cells and adventitial fibroblasts, TGFß1 increased elastin mRNA, but the elevation in elastin protein was dependent on BMPR2; TGFß1 and BMP4, via BMPR2, increased extracellular accumulation of fibrillin-1. Both BMP4- and TGFß1-stimulated elastic fiber assembly was impaired in idiopathic (I) PAH-PA adventitial fibroblast versus control cells, particularly those with hereditary (H) PAH and a BMPR2 mutation. This was related to profound reductions in elastin and fibrillin-1 mRNA. Elastin protein was increased in IPAH PA adventitial fibroblast by TGFß1 but only minimally so in BMPR2 mutant cells. Fibrillin-1 protein increased only modestly in IPAH or HPAH PA adventitial fibroblasts stimulated with BMP4 or TGFß1. In Bmpr2/1a heterozygote mice, reduced PA fibrillin-1 was associated with elastic fiber susceptibility to degradation and more severe pulmonary hypertension. CONCLUSIONS: Disrupting BMPR2 impairs TGFß1- and BMP4-mediated elastic fiber assembly and is of pathophysiologic significance in PAH.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Tecido Elástico/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Remodelação Vascular , Animais , Proteína Morfogenética Óssea 4/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/deficiência , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/deficiência , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Tecido Elástico/patologia , Tecido Elástico/fisiopatologia , Elastina/genética , Elastina/metabolismo , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/patologia , Hipertensão Pulmonar Primária Familiar/fisiopatologia , Fibrilina-1/genética , Fibrilina-1/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Predisposição Genética para Doença , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Interferência de RNA , Transfecção
11.
Am J Respir Crit Care Med ; 195(7): 930-941, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27779452

RESUMO

RATIONALE: Idiopathic or heritable pulmonary arterial hypertension is characterized by loss and obliteration of lung vasculature. Endothelial cell dysfunction is pivotal to the pathophysiology, but different causal mechanisms may reflect a need for patient-tailored therapies. OBJECTIVES: Endothelial cells differentiated from induced pluripotent stem cells were compared with pulmonary arterial endothelial cells from the same patients with idiopathic or heritable pulmonary arterial hypertension, to determine whether they shared functional abnormalities and altered gene expression patterns that differed from those in unused donor cells. We then investigated whether endothelial cells differentiated from pluripotent cells could serve as surrogates to test emerging therapies. METHODS: Functional changes assessed included adhesion, migration, tube formation, and propensity to apoptosis. Expression of bone morphogenetic protein receptor type 2 (BMPR2) and its target, collagen IV, signaling of the phosphorylated form of the mothers against decapentaplegic proteins (pSMAD1/5), and transcriptomic profiles were also analyzed. MEASUREMENTS AND MAIN RESULTS: Native pulmonary arterial and induced pluripotent stem cell-derived endothelial cells from patients with idiopathic and heritable pulmonary arterial hypertension compared with control subjects showed a similar reduction in adhesion, migration, survival, and tube formation, and decreased BMPR2 and downstream signaling and collagen IV expression. Transcriptomic profiling revealed high kisspeptin 1 (KISS1) related to reduced migration and low carboxylesterase 1 (CES1), to impaired survival in patient cells. A beneficial angiogenic response to potential therapies, FK506 and Elafin, was related to reduced slit guidance ligand 3 (SLIT3), an antimigratory factor. CONCLUSIONS: Despite the site of disease in the lung, our study indicates that induced pluripotent stem cell-derived endothelial cells are useful surrogates to uncover novel features related to disease mechanisms and to better match patients to therapies.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Expressão Gênica/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Células-Tronco Pluripotentes Induzidas , Adolescente , Adulto , Diferenciação Celular/genética , Células Cultivadas , Células Endoteliais/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Transdução de Sinais/genética
12.
Circulation ; 133(18): 1783-94, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27045138

RESUMO

BACKGROUND: We previously reported high-throughput RNA sequencing analyses that identified heightened expression of the chromatin architectural factor High Mobility Group AT-hook 1 (HMGA1) in pulmonary arterial endothelial cells (PAECs) from patients who had idiopathic pulmonary arterial hypertension (PAH) in comparison with controls. Because HMGA1 promotes epithelial-to-mesenchymal transition in cancer, we hypothesized that increased HMGA1 could induce transition of PAECs to a smooth muscle (SM)-like mesenchymal phenotype (endothelial-to-mesenchymal transition), explaining both dysregulation of PAEC function and possible cellular contribution to the occlusive remodeling that characterizes advanced idiopathic PAH. METHODS AND RESULTS: We documented increased HMGA1 in PAECs cultured from idiopathic PAH versus donor control lungs. Confocal microscopy of lung explants localized the increase in HMGA1 consistently to pulmonary arterial endothelium, and identified many cells double-positive for HMGA1 and SM22α in occlusive and plexogenic lesions. Because decreased expression and function of bone morphogenetic protein receptor 2 (BMPR2) is observed in PAH, we reduced BMPR2 by small interfering RNA in control PAECs and documented an increase in HMGA1 protein. Consistent with transition of PAECs by HMGA1, we detected reduced platelet endothelial cell adhesion molecule 1 (CD31) and increased endothelial-to-mesenchymal transition markers, αSM actin, SM22α, calponin, phospho-vimentin, and Slug. The transition was associated with spindle SM-like morphology, and the increase in αSM actin was largely reversed by joint knockdown of BMPR2 and HMGA1 or Slug. Pulmonary endothelial cells from mice with endothelial cell-specific loss of Bmpr2 showed similar gene and protein changes. CONCLUSIONS: Increased HMGA1 in PAECs resulting from dysfunctional BMPR2 signaling can transition endothelium to SM-like cells associated with PAH.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/deficiência , Transição Epitelial-Mesenquimal/fisiologia , Proteína HMGA1a/biossíntese , Hipertensão Pulmonar/metabolismo , Fatores de Transcrição da Família Snail/biossíntese , Adolescente , Adulto , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Células Cultivadas , Criança , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Proteína HMGA1a/genética , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Lactente , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fatores de Transcrição da Família Snail/genética , Adulto Jovem
13.
J Biol Chem ; 290(7): 4047-58, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25540198

RESUMO

Our previous in vitro studies have identified hepatocyte nuclear factor 1α (HNF1α) as an obligated trans-activator for PCSK9 gene expression and demonstrated its functional involvement in the suppression of PCSK9 expression by berberine (BBR), a natural cholesterol-lowering compound. In this study, we investigated the mechanism underlying the inhibitory effect of BBR on HNF1α-mediated PCSK9 transcription. Administration of BBR to hyperlipidemic mice and hamsters lowered circulating PCSK9 concentrations and hepatic PCSK9 mRNA levels without affecting the gene expression of HNF1α. However, hepatic HNF1α protein levels were markedly reduced in BBR-treated animals as compared with the control. Using HepG2 cells as a model system, we obtained evidence that BBR treatment let to accelerated degradation of HNF1α protein. By applying inhibitors to selectively block the ubiquitin proteasome system (UPS) and autophagy-lysosomal pathway, we show that HNF1α protein content in HepG2 cells was not affected by bafilomycin A1 treatment, but it was dose-dependently increased by UPS inhibitors bortezomib and MG132. Bortezomib treatment elevated HNF1α and PCSK9 cellular levels with concomitant reductions of LDL receptor protein. Moreover, HNF1α protein displayed a multiubiquitination ladder pattern in cells treated with BBR or overexpressing ubiquitin. By expressing GFP-HNF1α fusion protein in cells, we observed that blocking UPS resulted in accumulation of GFP-HNF1α in cytoplasm. Importantly, we show that the BBR reducing effects on HNF1α protein and PCSK9 gene transcription can be eradicated by proteasome inhibitors. Altogether, our studies using BBR as a probe uncovered a new aspect of PCSK9 regulation by ubiquitin-induced proteasomal degradation of HNF1α.


Assuntos
Berberina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fígado/efeitos dos fármacos , Pró-Proteína Convertases/antagonistas & inibidores , Pró-Proteína Convertases/genética , Serina Endopeptidases/genética , Ubiquitina/metabolismo , Animais , Western Blotting , Células Cultivadas , Cricetinae , Células HEK293 , Células Hep G2 , Fator 1-alfa Nuclear de Hepatócito/antagonistas & inibidores , Fator 1-alfa Nuclear de Hepatócito/genética , Humanos , Fígado/metabolismo , Masculino , Mesocricetus , Camundongos , Regiões Promotoras Genéticas/genética , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina Endopeptidases/metabolismo , Transcrição Gênica/efeitos dos fármacos
14.
Am J Respir Crit Care Med ; 191(11): 1273-86, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25853696

RESUMO

RATIONALE: Pulmonary arterial hypertension is characterized by endothelial dysfunction, impaired bone morphogenetic protein receptor 2 (BMPR2) signaling, and increased elastase activity. Synthetic elastase inhibitors reverse experimental pulmonary hypertension but cause hepatotoxicity in clinical studies. The endogenous elastase inhibitor elafin attenuates hypoxic pulmonary hypertension in mice, but its potential to improve endothelial function and BMPR2 signaling, and to reverse severe experimental pulmonary hypertension or vascular pathology in the human disease was unknown. OBJECTIVES: To assess elafin-mediated regression of pulmonary vascular pathology in rats and in lung explants from patients with pulmonary hypertension. To determine if elafin amplifies BMPR2 signaling in pulmonary artery endothelial cells and to elucidate the underlying mechanism. METHODS: Rats with pulmonary hypertension induced by vascular endothelial growth factor receptor blockade and hypoxia (Sugen/hypoxia) as well as lung organ cultures from patients with pulmonary hypertension were used to assess elafin-mediated reversibility of pulmonary vascular disease. Pulmonary arterial endothelial cells from patients and control subjects were used to determine the efficacy and mechanism of elafin-mediated BMPR2 signaling. MEASUREMENTS AND MAIN RESULTS: In Sugen/hypoxia rats, elafin reduced elastase activity and reversed pulmonary hypertension, judged by regression of right ventricular systolic pressure and hypertrophy and pulmonary artery occlusive changes. Elafin improved endothelial function by increasing apelin, a BMPR2 target. Elafin induced apoptosis in human pulmonary arterial smooth muscle cells and decreased neointimal lesions in lung organ culture. In normal and patient pulmonary artery endothelial cells, elafin promoted angiogenesis by increasing pSMAD-dependent and -independent BMPR2 signaling. This was linked mechanistically to augmented interaction of BMPR2 with caveolin-1 via elafin-mediated stabilization of endothelial surface caveolin-1. CONCLUSIONS: Elafin reverses obliterative changes in pulmonary arteries via elastase inhibition and caveolin-1-dependent amplification of BMPR2 signaling.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/efeitos dos fármacos , Caveolina 1/efeitos dos fármacos , Elafina/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Inibidores de Proteases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Humanos , Miócitos de Músculo Liso/efeitos dos fármacos , Elastase Pancreática/efeitos dos fármacos , Ratos
15.
Am J Respir Crit Care Med ; 192(3): 356-66, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26030479

RESUMO

RATIONALE: Pulmonary arterial hypertension is characterized by endothelial dysregulation, but global changes in gene expression have not been related to perturbations in function. OBJECTIVES: RNA sequencing was used to discriminate changes in transcriptomes of endothelial cells cultured from lungs of patients with idiopathic pulmonary arterial hypertension versus control subjects and to assess the functional significance of major differentially expressed transcripts. METHODS: The endothelial transcriptomes from the lungs of seven control subjects and six patients with idiopathic pulmonary arterial hypertension were analyzed. Differentially expressed genes were related to bone morphogenetic protein type 2 receptor (BMPR2) signaling. Those down-regulated were assessed for function in cultured cells and in a transgenic mouse. MEASUREMENTS AND MAIN RESULTS: Fold differences in 10 genes were significant (P < 0.05), four increased and six decreased in patients versus control subjects. No patient was mutant for BMPR2. However, knockdown of BMPR2 by siRNA in control pulmonary arterial endothelial cells recapitulated 6 of 10 patient-related gene changes, including decreased collagen IV (COL4A1, COL4A2) and ephrinA1 (EFNA1). Reduction of BMPR2-regulated transcripts was related to decreased ß-catenin. Reducing COL4A1, COL4A2, and EFNA1 by siRNA inhibited pulmonary endothelial adhesion, migration, and tube formation. In mice null for the EFNA1 receptor, EphA2, versus control animals, vascular endothelial growth factor receptor blockade and hypoxia caused more severe pulmonary hypertension, judged by elevated right ventricular systolic pressure, right ventricular hypertrophy, and loss of small arteries. CONCLUSIONS: The novel relationship between BMPR2 dysfunction and reduced expression of endothelial COL4 and EFNA1 may underlie vulnerability to injury in pulmonary arterial hypertension.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Endotélio Vascular/fisiopatologia , Hipertensão Pulmonar Primária Familiar/genética , Análise de Sequência de RNA/métodos , Adolescente , Adulto , Animais , Células Cultivadas , Hipertensão Pulmonar Primária Familiar/fisiopatologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Transdução de Sinais/genética , Transcriptoma/genética , Adulto Jovem
16.
Am J Respir Crit Care Med ; 189(10): 1260-72, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24702692

RESUMO

RATIONALE: Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening disorder characterized by progressive loss of pulmonary microvessels. Although mutations in the bone morphogenetic receptor 2 (BMPR2) are found in 80% of heritable and ∼15% of patients with IPAH, their low penetrance (∼20%) suggests that other unidentified genetic modifiers are required for manifestation of the disease phenotype. Use of whole-exome sequencing (WES) has recently led to the discovery of novel susceptibility genes in heritable PAH, but whether WES can also accelerate gene discovery in IPAH remains unknown. OBJECTIVES: To determine whether WES can help identify novel gene modifiers in patients with IPAH. METHODS: Exome capture and sequencing was performed on genomic DNA isolated from 12 unrelated patients with IPAH lacking BMPR2 mutations. Observed genetic variants were prioritized according to their pathogenic potential using ANNOVAR. MEASUREMENTS AND MAIN RESULTS: A total of nine genes were identified as high-priority candidates. Our top hit was topoisomerase DNA binding II binding protein 1 (TopBP1), a gene involved in the response to DNA damage and replication stress. We found that TopBP1 expression was reduced in vascular lesions and pulmonary endothelial cells isolated from patients with IPAH. Although TopBP1 deficiency made endothelial cells susceptible to DNA damage and apoptosis in response to hydroxyurea, its restoration resulted in less DNA damage and improved cell survival. CONCLUSIONS: WES led to the discovery of TopBP1, a gene whose deficiency may increase susceptibility to small vessel loss in IPAH. We predict that use of WES will help identify gene modifiers that influence an individual's risk of developing IPAH.


Assuntos
Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Exoma/genética , Hipertensão Pulmonar/genética , Mutação , Proteínas Nucleares/genética , Adulto , Biomarcadores , Progressão da Doença , Hipertensão Pulmonar Primária Familiar , Feminino , Testes Genéticos , Humanos , Hipertensão Pulmonar/diagnóstico , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA
17.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352544

RESUMO

Pathological high shear stress (HSS, 100 dyn/cm 2 ) is generated in distal pulmonary arteries (PA) (100-500 µm) in congenital heart defects and in progressive PA hypertension (PAH) with inward remodeling and luminal narrowing. Human PA endothelial cells (PAEC) were subjected to HSS versus physiologic laminar shear stress (LSS, 15 dyn/cm 2 ). Endothelial-mesenchymal transition (EndMT), a feature of PAH not previously attributed to HSS, was observed. H3K27ac peaks containing motifs for an ETS-family transcription factor (ERG) were reduced, as was ERG-Krüppel-like factors (KLF)2/4 interaction and ERG expression. Reducing ERG by siRNA in PAEC during LSS caused EndMT; transfection of ERG in PAEC under HSS prevented EndMT. An aorto-caval shunt was preformed in mice to induce HSS and progressive PAH. Elevated PA pressure, EndMT and vascular remodeling were reduced by an adeno-associated vector that selectively replenished ERG in PAEC. Agents maintaining ERG in PAEC should overcome the adverse effect of HSS on progressive PAH.

18.
Nat Commun ; 14(1): 7578, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989727

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease in which pulmonary arterial (PA) endothelial cell (EC) dysfunction is associated with unrepaired DNA damage. BMPR2 is the most common genetic cause of PAH. We report that human PAEC with reduced BMPR2 have persistent DNA damage in room air after hypoxia (reoxygenation), as do mice with EC-specific deletion of Bmpr2 (EC-Bmpr2-/-) and persistent pulmonary hypertension. Similar findings are observed in PAEC with loss of the DNA damage sensor ATM, and in mice with Atm deleted in EC (EC-Atm-/-). Gene expression analysis of EC-Atm-/- and EC-Bmpr2-/- lung EC reveals reduced Foxf1, a transcription factor with selectivity for lung EC. Reducing FOXF1 in control PAEC induces DNA damage and impaired angiogenesis whereas transfection of FOXF1 in PAH PAEC repairs DNA damage and restores angiogenesis. Lung EC targeted delivery of Foxf1 to reoxygenated EC-Bmpr2-/- mice repairs DNA damage, induces angiogenesis and reverses pulmonary hypertension.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Humanos , Animais , Hipertensão Arterial Pulmonar/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Artéria Pulmonar/metabolismo , Dano ao DNA , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
19.
J Lipid Res ; 52(3): 518-30, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21196532

RESUMO

PCSK9 degrades LDL receptor (LDLR) in liver and thereby influences the circulating level of LDL cholesterol. Hence, mechanisms inhibiting PCSK9 expression have potential for cholesterol-lowering intervention. Previously, we demonstrated that oncostatin M (OM) activates LDLR gene transcription, resulting in an increased LDL uptake in HepG2 cells and a reduction of plasma LDL in hypercholesterolemic hamsters. Here we identify the suppression of PCSK9 expression by OM as one new mechanism that increases LDLR protein in HepG2 cells. Treating HepG2 cells with OM decreases PCSK9 mRNA and protein levels. Inhibition studies and small interfering RNA -targeted depletion revealed a critical role for JAK1 and JAK2 in mediating this OM inhibitory effect. Furthermore, we showed that OM induces transient phosphorylation of STAT1, STAT3, and STAT5 and sustained activation of ERK signaling molecules. While depletion of STAT members in HepG2 cells did not affect OM inhibitory activity on PCSK9 expression, blocking activation of the MEK1/ERK signaling pathway resulted in attenuation of the OM inhibitory effect. Finally, by using an anti-hamster PCSK9 antibody, we demonstrated the in vivo suppression of liver PCSK9 mRNA and protein expression by OM in hypercholesterolemic hamsters. Our study uncovered a cytokine-triggered regulatory network for PCSK9 expression that is linked to JAKs and the ERK signaling pathway.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Janus Quinases/metabolismo , Fígado/citologia , Fígado/metabolismo , Oncostatina M/farmacologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inativação Gênica , Células Hep G2 , Humanos , Janus Quinases/deficiência , Janus Quinases/genética , Fígado/efeitos dos fármacos , Camundongos , Fases de Leitura Aberta/genética , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Ratos , Receptores de LDL/genética , Receptores de LDL/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
20.
J Biol Chem ; 285(22): 16664-74, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20308079

RESUMO

ACSL3 is a member of the long chain acyl-CoA synthetase (ACSL) family that plays key roles in fatty acid metabolism in various tissues in an isozyme-specific manner. Our previous studies showed that ACSL3 was transcriptionally up-regulated by the cytokine oncostatin M (OSM) in HepG2 cells, accompanied by reduced cellular triglyceride content and enhanced beta-oxidation. In this study, we investigated the molecular mechanism underlying the OSM-induced activation of ACSL3 gene transcription in HepG2 cells. We showed that OSM treatment resulted in a coordinated elevation of mRNA levels of ACSL3 and peroxisome proliferator-activated receptor delta (PPARdelta). The effect of OSM on ACSL3 mRNA expression was inhibited by cellular depletion of PPARdelta. By utilizing a PPARdelta agonist, L165041, we demonstrated that activation of PPARdelta led to increases in ACSL3 promoter activity, mRNA level, and protein level in HepG2 cells. Analysis of the ACSL3 promoter sequence identified two imperfect PPAR-responsive elements (PPRE) located in the ACSL3 promoter region -944 to -915, relative to the transcription start site. The up-regulation of ACSL3 promoter activity by PPARdelta was abolished by deletion of this PPRE-containing region or mutation to disrupt the binding sites. Direct interactions of PPARdelta with ACSL3-PPRE sequences were demonstrated by gel mobility shift and chromatin immunoprecipitation assays. Finally, we provided in vivo evidence showing that activation of PPARdelta by L165041 in hamsters increased ACSL3 mRNA and protein levels in the liver. These new findings define ACSL3 as a novel molecular target of PPARdelta in HepG2 cells and provide a regulatory mechanism for ACSL3 transcription in liver tissue.


Assuntos
Carcinoma Hepatocelular/metabolismo , Coenzima A Ligases/fisiologia , Neoplasias Hepáticas/metabolismo , PPAR delta/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Coenzima A Ligases/metabolismo , Cricetinae , Citocinas/metabolismo , Humanos , Fígado/metabolismo , Dados de Sequência Molecular , Oncostatina M/metabolismo , Regiões Promotoras Genéticas , Elementos de Resposta , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA