Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chem Soc Rev ; 51(16): 7066-7114, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35916511

RESUMO

Proteolysis targeting chimeras (PROTACs) technology is a novel and promising therapeutic strategy using small molecules to induce ubiquitin-dependent degradation of proteins. It has received extensive attention from both academia and industry as it can potentially access previously inaccessible targets. However, the design and optimization of PROTACs present big challenges for researchers, and the general strategy for its development and optimization is a lot of trial and error based on experience. This review highlights the important advances in this rapidly growing field and critical limitations of the traditional trial-and-error approach to developing PROTACs by analyzing numerous representative examples of PROTACs development. We summarize and analyze the general principles and strategies for PROTACs design and optimization from the perspective of chemical structure design, and propose potential future pathways to facilitate the development of PROTACs.


Assuntos
Proteólise , Ubiquitina-Proteína Ligases
2.
J Am Chem Soc ; 138(40): 13103-13106, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27643490

RESUMO

Here we report an iridium-catalyzed asymmetric umpolung allylation of imines as a general approach to prepare 1,4-disubstituted homoallylic amines, a fundamental class of compounds that are hitherto not straightforward to obtain. This transformation proceeds by a cascade involving an intermolecular regioselective allylation of 2-azaallyl anions and a following 2-aza-Cope rearrangement, utilizes easily available reagents and catalysts, tolerates a substantial scope of substrates, and readily leads to various enantioenriched, 1,4-disubstituted homoallylic primary amines.

3.
Signal Transduct Target Ther ; 7(1): 181, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680848

RESUMO

PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.


Assuntos
Ubiquitina-Proteína Ligases , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
4.
J Med Chem ; 63(19): 11012-11033, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32924477

RESUMO

The nuclear protein poly(ADP-ribose) polymerase-1 (PARP1) has a well-established role in the signaling and repair of DNA and is a validated therapeutic target for cancers and other human diseases. Here, we have designed, synthesized, and evaluated a series of small-molecule PARP1 degraders based on the proteolysis-targeting chimera (PROTAC) concept. Our efforts have led to the discovery of highly potent PARP1 degraders, as exemplified by compound 18 (SK-575). SK-575 potently inhibits the growth of cancer cells bearing BRCA1/2 mutations and induces potent and specific degradation of PARP1 in various human cancer cells even at low picomolar concentrations. SK-575 achieves durable tumor growth inhibition in mice when used as a single agent or in combination with cytotoxic agents, such as temozolomide and cisplatin. These data demonstrate that SK-575 is a highly potent and efficacious PARP1 degrader.


Assuntos
Antineoplásicos , Desenho de Fármacos , Neoplasias , Ftalazinas , Piperazinas , Poli(ADP-Ribose) Polimerase-1 , Animais , Humanos , Camundongos , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Ligantes , Neoplasias/tratamento farmacológico , Ftalazinas/química , Piperazinas/química , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteólise
5.
Eur J Med Chem ; 198: 112336, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32387836

RESUMO

Proto-oncogene c-Myc plays an essential role in the development of colorectal cancer (CRC), since downregulation of c-Myc inhibits intestinal polyposis, which is the most cardinal pathological change in the development of CRC. Herein, a series of novel phenoxy-N-phenylaniline derivatives were designed and synthesized. The cytotoxicity activities of all the derivatives were measured by MTT assay in different colon cancer cells, 4-(3,5-dimethoxy-4-(((4-methoxyphenethyl)amino)methyl)phenoxy)-N-phenylaniline (42) was discovered, the lead compound 42 with excellent cytotoxicity activity of IC50 = 0.32 µM, IC50 = 0.51 µM, in HT29 and HCT 15 cells, respectively. Compound 42 had a good inhibitory activity of c-Myc/MAX dimerization and DNA binding. Besides, compound 42 could effectively induce apoptosis and induced G2/M arrest in low concentration and G0/G1 arrest in high concentration to prevent the proliferation and differentiation in colon cancer cells. Western blot analysis confirmed the 42 strongly down-regulated expression of c-Myc. Furthermore, during 30 days treatment 42 exhibited excellent efficacy in HT29 tumor xenograft model without causing significant weight loss and toxicity. Consequently, 42 could be a promising drug candidate for CRC therapy.


Assuntos
Compostos de Anilina/síntese química , Antineoplásicos/síntese química , Neoplasias Colorretais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Sequência de Aminoácidos , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Fase G1/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Conformação Proteica , Multimerização Proteica , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/genética , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Eur J Med Chem ; 187: 111952, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846828

RESUMO

Cyclin-dependent kinase (CDK) family members are promising molecular targets in discovering potent inhibitors in disease settings, they function differentially. CDK2, CDK4 and CDK6, directly regulate the cell cycle, while CDK9 primarily modulates the transcription regulation. In discovering inhibitors of these CDKs, toxicity associated with off-target effect on other CDK homologs often posts as a clinical issue and hinders their further therapeutic development. To improve efficacy and reduce toxicity, here, using the Proteolysis Targeted Chimeras (PROTACs) approach, we design and further optimize small molecule degraders targeting multiple CDKs. We showed that heterobifunctional compound A9 selectively degraded CDK2. We also identified a dual-degrader, compound F3, which potently induced degradation of both CDK2 (DC50: 62 nM) and CDK9 (DC50: 33 nM). In human prostate cancer PC-3 cells, compound F3 potently inhibits cell proliferation by effectively blocking the cell cycle in S and G2/M phases. Our preliminary data suggests that PROTAC-oriented CDK2/9 degradation is potentially an effective therapeutic approach.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteólise/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/metabolismo , Relação Dose-Resposta a Droga , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Células PC-3 , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Eur J Med Chem ; 171: 265-281, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30925341

RESUMO

Prostate cancer (PC) is the second most common malignancy in men worldwide. Among current therapies, two antiandrogens, Abiraterone Acetate and Enzalutamide (Enza) have become the standard of care for patients with metastatic castration-resistant prostate cancer (mCRPC). Here, we designed and synthesized a new series of nonsteroidal compounds deriving from the hybridization of Abiraterone (Abi) and Enzalutamide, among which compound 4a featuring the diphenylamine scaffold was identified as a potent and cell selective androgen receptor (AR) antagonist. In cell proliferation assays, compound 4a exhibited better antiproliferative activities than Enzalutamide against AR-overexpressing VCaP cells and 22Rv1 cells bearing H874Y-mutated AR. In addition, 4a suppressed the activity of AR-F876L mutant that confers resistance to Enzalutamide and efficiently blocked R1881-induced PSA and FKBP5 gene expression. In competitive binding assay, compound 4a displayed higher binding affinity to AR than Enzalutamide. These results suggest compound 4a as a potential candidate to treat Enza-resistant CRPC.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos/farmacologia , Descoberta de Drogas , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/síntese química , Antagonistas de Receptores de Andrógenos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Modelos Moleculares , Estrutura Molecular , Neoplasias de Próstata Resistentes à Castração/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA