Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(25): e2307328, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38196157

RESUMO

In the development of nanomaterial electrodes for improved electrocatalytic activity, much attention is paid to the compositions, lattice, and surface morphologies. In this study, a new concept to enhance electrocatalytic activity is proposed by reducing impedance inside nanomaterial electrodes. Gold nanodendrites (AuNDs) are grown along silver nanowires (AgNWs) on flexible polydimethylsiloxane (PDMS) support. The AuNDs/AgNWs/PDMS electrode affords an oxidative peak current density of 50 mA cm-2 for ethanol electrooxidation, a value ≈20 times higher than those in the literature do. Electrochemical impedance spectroscopy (EIS) demonstrates the significant contribution of the AgNWs to reduce impedance. The peak current densities for ethanol electrooxidation are decreased 7.5-fold when the AgNWs are electrolytically corroded. By in situ surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) simulation, it is validated that the ethanol electrooxidation favors the production of acetic acid with undetectable CO, resulting in a more complete oxidation and long-term stability, while the AgNWs corrosion greatly decreases acetic acid production. This novel strategy for fabricating nanomaterial electrodes using AgNWs as a charge transfer conduit may stimulate insights into the design of nanomaterial electrodes.

2.
Anal Chem ; 95(4): 2413-2419, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36633558

RESUMO

The roadblocks for the planar silver/silver chloride (Ag/AgCl) quasi-reference electrode (qRE) development are the potential stability and long-term reliability as potentiometric sensors. Although there is a significant amount of work on potentiometric screen-printed and inkjet-printed sensors, none of the REs has comparable performance to that of the conventional glass RE and knowledge on reliable planar Ag/AgCl qREs is still limited. Here, a novel fishbone-structured flexible Ag/AgCl qRE (Fishbone-Ag/AgCl qRE) was developed and its stability and long-term reliability were significantly improved. The stability of the Fishbone-Ag/AgCl qRE was comparable to that of a commercial glass Ag/AgCl RE. In a long-term stability test, the Fishbone-Ag/AgCl qRE could continuously and stably operate for more than 4 h. Shelf-life testing revealed a 6 month life span. The conductivity and diameter of the nanowires in the fishbone structure of the Ag/AgCl qRE had important influences on electrochemical properties. The conductivity of the qRE influenced the charge-transfer rate in the electrode so that it affected the potential stability. Thicker diameter and slight chlorination on the surface of the AgNWs resulted in enhanced long-term reliability of the qRE. The capabilities of this new nanostructured material were applied in vivo for noninvasive monitoring of electrocardiogram. The discovery is elementary and substantially informs improved nanostructure RE design for testing and commercial medical device applications.


Assuntos
Nanofios , Prata , Prata/química , Reprodutibilidade dos Testes , Eletrodos , Eletrocardiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA