Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurochem ; 163(6): 500-516, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35997641

RESUMO

Ischemic stroke is a major global health issue. Ischemia and subsequent reperfusion results in stroke-related brain injury. Previous studies have demonstrated that nuclear-enriched abundant transcript 1 (NEATa and early growth response 1 (EGR1) are involved in ischemia reperfusion (IR) injury). In this study, we aimed to explore the roles of NEAT1/EGR1 axis as well as its downstream effector RNA binding motif protein 25 (RBM25) in cerebral IR injury. Oxygen-glucose deprivation/reperfusion (OGD/R) and middle cerebral artery occlusion (MCAO) were used to establish in vitro and in vivo models of cerebral IR injury, respectively. According to our data, NEAT1, EGR1, and RBM25 levels were elevated in OGD/R-exposed SK-N-SH and SH-SY5Y cells and cerebral cortex of MCAO mice. NEAT1, EGR1, or RBM25 knockdown effectively reduced infarct volumes and apoptosis, and improved neurological function. Mechanistically, NEAT1 directly interacted with EGR1, which restrained WW domain containing E3 ubiquitin protein ligase 1 (WWP1)-mediated ubiquitination of EGR1 and subsequently caused EGR1 accumulation. EGR1 bound to RBM25 promoter and transcriptionally activated RBM25. Rescue experiments indicated that RBM25 overexpression abolished the therapeutic effects of NEAT1 knockdown. In conclusion, this work identified a novel NEAT1/EGR1/RBM25 axis in potentiating brain injury after IR insults, suggesting a potential therapeutic target for ischemic stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , MicroRNAs , Neuroblastoma , RNA Longo não Codificante , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média , Oxigênio/metabolismo , Apoptose/genética , Glucose/metabolismo , Motivos de Ligação ao RNA , Isquemia Encefálica/metabolismo , MicroRNAs/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
J Integr Neurosci ; 21(6): 152, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36424757

RESUMO

BACKGROUND: This study aimed to reveal the detailed immune-related mechanisms underlying ischemic stroke (IS) and identify new immune-associated biomarkers for clinical management. METHODS: Differentially expressed genes (DEGs) between IS samples and normal controls were identified using the GSE16561 dataset. The feature genes of the immune cells were investigated using the GSE72642 dataset. Weighted correlation network analysis (WGCNA) was performed to reveal module genes, followed by an investigation of common DEGs and a functional enrichment analysis. Potential biomarkers were identified based on hub genes in protein-protein interaction networks and WGCNA. Finally, GSE158312 was used for biomarker verification. RESULTS: In total, 1230 DEGs were identified between the IS samples and normal controls. Seven clinically significant modules were identified using WGCNA. The yellow module genes were positively correlated with polymorphonuclear cells (PMNC), whereas the brown module genes were positively correlated with CD4+ T cells. Eight genes were selected as hub genes. These genes are mainly involved in functions such as the innate immune response. Upregulated TLR2 and ARG1 levels were significantly different between the two groups in the verification dataset. CONCLUSIONS: Our findings suggest ARG1 and TLR2 as novel biomarkers for IS. Upregulated TLR2 might play a role in IS development by participating in the innate immune response function.


Assuntos
AVC Isquêmico , Humanos , Receptor 2 Toll-Like , Biomarcadores , Mapas de Interação de Proteínas
3.
Acta Neurobiol Exp (Wars) ; 82(3): 358-372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36214718

RESUMO

Hypoxia inducible factor 1α (HIF­1α) has been reported to play a key role in protecting neurons from ischaemic injury. However, the exact molecular mechanisms remain largely unclear. PC12 cells were exposed to oxygen glucose deprivation/reoxygenation (OGD/R) conditions to mimic ischaemic injury in vitro. The expression of the HIF­1α mRNA, miR­20a­5p, and kinesin family member 5A (KIF5A) mRNA was tested using qRT-PCR. Levels of the HIF­1α, LC3I/II, P62, LAMP2, cathepsin B (CTSB) and KIF5A proteins were determined using western blotting. The CCK­8 assay was conducted to assess PC12 cell viability. DQ­Red­BSA and LysoSensor Green DND­189 dyes were employed to measure the proteolytic activity and pH of lysosomes, respectively. The interaction between miR­20a­5p and HIF­1α or KIF5A was verified by performing chromatin immunoprecipitation (ChIP) and/or dual­luciferase reporter assays. TUNEL staining was adopted to assess PC12 cell death. GFP­LC3 and RFP­GFP­LC3 probes were used to examine the autophagy status and autophagy flux of PC12 cells. A rat middle cerebral artery occlusion­reperfusion (MCAO/R) model was established to investigate the role of the HIF­1α/miR­20a­5p/KIF5A axis in ischaemic stroke in vivo. OGD/R exposure initiated PC12 cell autophagy and injury. HIF­1α expression was substantially increased in PC12 cells after OGD/R exposure. Overexpression of HIF­1α reversed the effects of OGD/R on reducing cell viability, blocking autophagy flux and inducing lysosome dysfunction. These rescue effects of HIF­1α depended on KIF5A. HIF­1α negatively regulated miR­20a­5p expression by targeting its promoter region, and miR­20a­5p directly targeted and negatively regulated the KIF5A mRNA. Overexpression of miR­20a­5p abolished the effects of HIF­1α on rescuing OGD/R­induced injury in PC12 cells. The effects of the HIF­1α/miR­20a­5p/KIF5A axis were verified in MCAO/R rats. HIF­1α protects PC12 cells from OGD/R­induced cell injury by regulating autophagy flux through the miR­20a­5p/KIF5A axis.


Assuntos
Isquemia Encefálica , Subunidade alfa do Fator 1 Induzível por Hipóxia , Cinesinas , MicroRNAs , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Apoptose , Autofagia , Catepsina B , Sobrevivência Celular , Glucose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Cinesinas/genética , MicroRNAs/genética , Oxigênio , Células PC12 , RNA Mensageiro , Ratos , Traumatismo por Reperfusão/metabolismo
4.
Brain Res ; 1785: 147884, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35304105

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a major neurodegenerative disorder. The functions of lncRNA RMRP have been characterized mainly in various human cancers. However, the functional network of RMRP in AD progression remains unknown. METHODS: Human serum samples, AD transgenic (Tg) mice as well as SH-SY5Y cells were used in this study. The RNA expression patterns of RMRP, miR-3142 and TRIB3 were assessed by quantitative real-time PCR (qRT-PCR). Levels of apoptosis- or autophagy-associated biomarkers and TRIB3 level were evaluated using immunohistochemistry (IHC), western blotting or immunofluorescence assays, respectively. Bioinformatics methods and luciferase assays were used to predict and validate the interactions among RMRP, miR-3142, and TRIB3. Flow cytometry, TUNEL staining and EdU assays were used to examine the apoptosis and proliferation of neurons, respectively. RESULTS: The elevated RMRP and TRIB3 expressions and activation of autophagy were observed in AD. Knockdown of RMRP restrained neuronal apoptosis and autophagy activation in vitro and in vivo. Interestingly, TRIB3 overexpression reversed the biological effects of RMRP silencing on Aß1-42-induced cell apoptosis and autophagy. Further mechanistic analysis showed RMRP acted as a sponge of miR-3142 to elevate TRIB3 level. CONCLUSION: These data illustrated that knockdown of RMRP inhibited autophagy and apoptosis via regulating miR-3142/TRIB3 axis in AD, suggesting that inhibition of RMRP maybe a therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , MicroRNAs , RNA Longo não Codificante , Doença de Alzheimer/genética , Animais , Apoptose , Autofagia , Linhagem Celular Tumoral , Camundongos , MicroRNAs/metabolismo , Neurônios/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Clin Neuroradiol ; 28(1): 75-80, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27325366

RESUMO

OBJECTIVE: To discuss the significance of the radiculomuscular artery in typical variations of the distal vertebral artery (VA) from the viewpoint of microsurgical anatomy. METHODS: Some variations involving the radiculomuscular artery revealed by digital subtraction angiography (DSA) were recruited and studied together with our findings from cadaver dissections. RESULTS: A total of 29 variants were found in 26 patients, including 10 C­2 vertebral origins of the posteroinferior cerebellar artery (PICA), 13 duplicated (12 patients) and 6 aberrant V3s. An aberrant V3 was observed in our cadaver specimen. Each of these variants involved only the distal part of the lateral spinal artery (LSA) that incorporates the radiculomuscular artery and the radiculomedullary branch. Using DSA two aberrant V3s were indicated and another one was verified by anatomical study as an extradural location. CONCLUSION: The radiculomuscular artery accounts for the C­2 vertebral origin of the PICA, duplicated and aberrant V3, and extradural course of an aberrant V3 does exist. A probable extradural course of a variant between C­2 and C­1 should be kept in mind whenever each of the variations involving the radiculomuscular artery is detected by DSA or computed tomography angiography (CTA).


Assuntos
Angiografia Digital , Artéria Vertebral/anormalidades , Cadáver , Cerebelo , China , Humanos , Estudos Retrospectivos , Artéria Vertebral/diagnóstico por imagem
6.
Onco Targets Ther ; 10: 725-733, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28223828

RESUMO

OBJECTIVE: Impaired immunonutritional status has disadvantageous effects on outcomes for cancer patients. Preoperative albumin-to-globulin ratio (AGR) and the prognostic nutrition index (PNI) have been used as prognostic factors in various cancers. We aimed to evaluate the clinical significance of the AGR and PNI in glioblastoma. MATERIALS AND METHODS: This retrospective analysis involved 166 patients. Demographic, clinical, and laboratory data were collected. AGR and the PNI were calculated as AGR = albumin/(total serum protein - albumin) and PNI = albumin (g/L) + 5 × total lymphocyte count (109/L). Overall survival (OS) was estimated by Kaplan-Meier analysis. Receiver-operating characteristic analysis was used to assess the predictive ability of AGR and the PNI. Cox proportional-hazard models estimating hazard ratios (HRs) and 95% confidence intervals (CIs) were used for univariable and multivariable survival analyses. RESULTS: The cutoff values of AGR and PNI were 1.75 and 48. OS was enhanced, with high AGR (>1.75) and the PNI (>48) (P<0.001 for both). Areas under the receiver-operating characteristic curve for AGR and the PNI were 0.68 and 0.631 for 1-year survival and 0.651 and 0.656 for 2-year survival (P<0.05 for all), respectively. On multivariable analyses, both AGR and the PNI were independent predictors of OS (AGR, HR 0.785, 95% CI 0.357-0.979 [P=0.04]; PNI, HR 0.757, 95% CI 0.378-0.985 [P=0.039]). On subgroup analysis, AGR and the PNI were significant prognostic factors for OS in patients with adjuvant therapy (AGR P<0.001; PNI P=0.001). CONCLUSION: Preoperative AGR and the PNI may be easy-to-perform and inexpensive indices for predicting OS with glioblastoma. AGR and the PNI could also help in developing good adjuvant-therapy schedules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA