Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 605(7911): 681-686, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35614247

RESUMO

Cilial pumping is a powerful strategy used by biological organisms to control and manipulate fluids at the microscale. However, despite numerous recent advances in optically, magnetically and electrically driven actuation, development of an engineered cilial platform with the potential for applications has remained difficult to realize1-6. Here we report on active metasurfaces of electronically actuated artificial cilia that can create arbitrary flow patterns in liquids near a surface. We first create voltage-actuated cilia that generate non-reciprocal motions to drive surface flows at tens of microns per second at actuation voltages of 1 volt. We then show that a cilia unit cell can locally create a range of elemental flow geometries. By combining these unit cells, we create an active cilia metasurface that can generate and switch between any desired surface flow pattern. Finally, we integrate the cilia with a light-powered complementary metal-oxide-semiconductor (CMOS) clock circuit to demonstrate wireless operation. As a proof of concept, we use this circuit to output voltage pulses with various phase delays to demonstrate improved pumping efficiency using metachronal waves. These powerful results, demonstrated experimentally and confirmed using theoretical computations, illustrate a pathway towards fine-scale microfluidic manipulation, with applications from microfluidic pumping to microrobotic locomotion.

2.
Proc Natl Acad Sci U S A ; 120(19): e2221740120, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126707

RESUMO

Biological systems convert chemical energy into mechanical work by using protein catalysts that assume kinetically controlled conformational states. Synthetic chemomechanical systems using chemical catalysis have been reported, but they are slow, require high temperatures to operate, or indirectly perform work by harnessing reaction products in liquids (e.g., heat or protons). Here, we introduce a bioinspired chemical strategy for gas-phase chemomechanical transduction that sequences the elementary steps of catalytic reactions on ultrathin (<10 nm) platinum sheets to generate surface stresses that directly drive microactuation (bending radii of 700 nm) at ambient conditions (T = 20 °C; Ptotal = 1 atm). When fueled by hydrogen gas and either oxygen or ozone gas, we show how kinetically controlled surface states of the catalyst can be exploited to achieve fast actuation (600 ms/cycle) at 20 °C. We also show that the approach can integrate photochemically controlled reactions and can be used to drive the reconfiguration of microhinges and complex origami- and kirigami-based microstructures.

3.
Nano Lett ; 20(6): 4095-4101, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32396734

RESUMO

Tuning electrical conductivity of semiconducting materials through substitutional doping is crucial for fabricating functional devices. This, however, has not been fully realized in two-dimensional (2D) materials due to the difficulty of homogeneously controlling the dopant concentrations and the lack of systematic study of the net impact of substitutional dopants separate from that of the unintentional doping from the device fabrication processes. Here, we grow wafer-scale, continuous MoS2 monolayers with tunable concentrations of Nb and Re and fabricate devices using a polymer-free approach to study the direct electrical impact of substitutional dopants in MoS2 monolayers. In particular, the electrical conductivity of Nb doped MoS2 in the absence of electrostatic gating is reproducibly tuned over 7 orders of magnitude by controlling the Nb concentration. Our study further indicates that the dopant carriers do not fully ionize in the 2D limit, unlike in their three-dimensional analogues, which is explained by weaker charge screening and impurity band conduction. Moreover, we show that the dopants are stable, which enables the doped films to be processed as independent building blocks that can be used as electrodes for functional circuitry.

4.
Nano Lett ; 20(7): 4850-4856, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32525319

RESUMO

Origami design principles are scale invariant and enable direct miniaturization of origami structures provided the sheets used for folding have equal thickness to length ratios. Recently, seminal steps have been taken to fabricate microscale origami using unidirectionally actuated sheets with nanoscale thickness. Here, we extend the full power of origami-inspired fabrication to nanoscale sheets by engineering bidirectional folding with 4 nm thick atomic layer deposition (ALD) SiNx-SiO2 bilayer films. Strain differentials within these bilayers result in bending, producing microscopic radii of curvature. We lithographically pattern these bilayers and localize the bending using rigid panels to fabricate a variety of complex micro-origami devices. Upon release, these devices self-fold according to prescribed patterns. Our approach combines planar semiconductor microfabrication methods with computerized origami design, making it easy to fabricate and deploy such microstructures en masse. These devices represent an important step forward in the fabrication and assembly of deployable micromechanical systems that can interact with and manipulate micro- and nanoscale environments.

5.
Nano Lett ; 19(12): 9154-9159, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31738851

RESUMO

The local structure and geometry of catalytic interfaces can influence the selectivity of chemical reactions. Selectivity is often critical for the practical realization of reactions such as the electroreduction of carbon dioxide (CO2). Previously developed strategies to manipulate the structure and geometry of catalysts for electroreduction of CO2 involve complex processes or fail to efficiently alter the selectivity. Here, using a prestrained polymer, we uniaxially and biaxially compress a 60 nm gold film to form a nano-folded electrocatalyst for CO2 reduction. We observe two kinds of folds and can tune the ratio of loose to tight folds by varying the extent of prestrain in the polymer. We characterize the nano-folded catalysts using X-ray diffraction, scanning, and transmission electron microscopy. We observe grain reorientation and coarsening in the nano-folded gold catalysts. We measure an enhancement of Faradaic efficiency for carbon monoxide formation with the biaxially compressed nano-folded catalyst by a factor of about nine as compared to the flat catalyst (up to 87.4%). We rationalize this observation by noting that an increase of the local pH in the tight folds of the catalyst outweighs the effects of alterations in grain characteristics. Together, our studies demonstrate that nano-folded geometries can significantly alter grain characteristics, mass transport, and catalytic performance.

6.
Microsc Microanal ; 29(Supplement_1): 284-285, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613141
7.
Sci Rep ; 12(1): 12284, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854039

RESUMO

Electron ptychography provides new opportunities to resolve atomic structures with deep sub-angstrom spatial resolution and to study electron-beam sensitive materials with high dose efficiency. In practice, obtaining accurate ptychography images requires simultaneously optimizing multiple parameters that are often selected based on trial-and-error, resulting in low-throughput experiments and preventing wider adoption. Here, we develop an automatic parameter selection framework to circumvent this problem using Bayesian optimization with Gaussian processes. With minimal prior knowledge, the workflow efficiently produces ptychographic reconstructions that are superior to those processed by experienced experts. The method also facilitates better experimental designs by exploring optimized experimental parameters from simulated data.

8.
Sci Adv ; 7(2)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523991

RESUMO

Ultrawide-bandgap semiconductors are ushering in the next generation of high-power electronics. The correct crystal orientation can make or break successful epitaxy of such semiconductors. Here, it is found that single-crystalline layers of α-(AlGa)2O3 alloys spanning bandgaps of 5.4 to 8.6 eV can be grown by molecular beam epitaxy. The key step is found to be the use of m-plane sapphire crystal. The phase transition of the epitaxial layers from the α- to the narrower bandgap ß-phase is catalyzed by the c-plane of the crystal. Because the c-plane is orthogonal to the growth front of the m-plane surface of the crystal, the narrower bandgap pathways are eliminated, revealing a route to much wider bandgap materials with structural purity. The resulting energy bandgaps of the epitaxial layers span a broad range, heralding the successful epitaxial stabilization of the largest bandgap materials family to date.

9.
Sci Robot ; 6(52)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34043551

RESUMO

Shape-memory actuators allow machines ranging from robots to medical implants to hold their form without continuous power, a feature especially advantageous for situations where these devices are untethered and power is limited. Although previous work has demonstrated shape-memory actuators using polymers, alloys, and ceramics, the need for micrometer-scale electro-shape-memory actuators remains largely unmet, especially ones that can be driven by standard electronics (~1 volt). Here, we report on a new class of fast, high-curvature, low-voltage, reconfigurable, micrometer-scale shape-memory actuators. They function by the electrochemical oxidation/reduction of a platinum surface, creating a strain in the oxidized layer that causes bending. They bend to the smallest radius of curvature of any electrically controlled microactuator (~500 nanometers), are fast (<100-millisecond operation), and operate inside the electrochemical window of water, avoiding bubble generation associated with oxygen evolution. We demonstrate that these shape-memory actuators can be used to create basic electrically reconfigurable microscale robot elements including actuating surfaces, origami-based three-dimensional shapes, morphing metamaterials, and mechanical memory elements. Our shape-memory actuators have the potential to enable the realization of adaptive microscale structures, bio-implantable devices, and microscopic robots.


Assuntos
Robótica/instrumentação , Materiais Inteligentes , Eletricidade , Técnicas Eletroquímicas , Desenho de Equipamento , Humanos , Fenômenos Mecânicos , Microtecnologia , Oxirredução , Platina/química , Materiais Inteligentes/química
10.
Ultramicroscopy ; 215: 113019, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32521385

RESUMO

Friedel's law guarantees an inversion-symmetric diffraction pattern for thin, light materials where a kinematic approximation or a single-scattering model holds. Typically, breaking Friedel symmetry is ascribed to multiple scattering events within thick, non-centrosymmetric crystals. However, two-dimensional (2D) materials such as a single monolayer of MoS2 can also violate Friedel's law, with unexpected contrast between conjugate Bragg peaks. We show analytically that retaining higher order terms in the power series expansion of the scattered wavefunction can describe the anomalous contrast between hkl and hkl¯peaks that occurs in 2D crystals with broken in-plane inversion symmetry. These higher-order terms describe multiple scattering paths starting from the same atom in an atomically thin material. Furthermore, 2D materials containing heavy elements, such as WS2, always act as strong phase objects, violating Friedel's law no matter how high the energy of the incident electron beam. Experimentally, this understanding can enhance diffraction-based techniques to provide rapid imaging of polarity, twin domains, in-plane rotations, or other polar textures in 2D materials.

11.
Microscopy (Oxf) ; 67(suppl_1): i150-i161, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29409049

RESUMO

What does the diffraction pattern from a single atom look like? How does it differ from the scattering from long-range potential? With the development of new high-dynamic range pixel array detectors to measure the complete momentum distribution, these questions have immediate relevance for designing and understanding momentum-resolved imaging modes. We explore the asymptotic limits of long-range and short-range potentials. We use a simple quantum mechanical model to explain the general and asymptotic limits for the probability distribution in both real and reciprocal space. Features in the scattering potential much larger than the probe size cause the bright field (BF) disk to deflect uniformly, while features much smaller than the probe size, instead of a deflection, cause a redistribution of intensity within the BF disk. Because long-range and short-range features are encoded differently in the diffraction pattern, it is possible to separate their contributions in differential phase-contrast (DPC) or center-of-mass (CoM) imaging. The shape profiles for atomic resolution CoM imaging are dominated by the shape of the probe gradient and not the highly singular atomic potentials or their local fields. Instead, only the peak height shows an atomic number sensitivity, whose precise dependence is determined by the convergence angle. At lower convergence angles, the contrast oscillates with increasing atomic number, similar to BF imaging. The range of collection angles impacts DPC and CoM imaging differently, with CoM being more sensitive to the upper cutoff limit, while DPC is more sensitive to the lower cutoff.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA