Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Med ; 30(1): 60, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750415

RESUMO

Severe acute pancreatitis (SAP) begins with premature activation of enzymes, promoted by the immune system, triggering a potential systemic inflammatory response that leads to organ failure with increased mortality and a bleak prognosis. Interleukin-22 (IL-22) is a cytokine that may have a significant role in SAP. IL-22, a member of the IL-10 cytokine family, has garnered growing interest owing to its potential tissue-protective properties. Recently, emerging research has revealed its specific effects on pancreatic diseases, particularly SAP. This paper provides a review of the latest knowledge on the role of IL-22 and its viability as a therapeutic target in SAP.


Assuntos
Interleucina 22 , Interleucinas , Pancreatite , Humanos , Interleucinas/metabolismo , Pancreatite/metabolismo , Pancreatite/imunologia , Animais , Doença Aguda
2.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493662

RESUMO

Mitochondria form a complex, interconnected reticulum that is maintained through coordination among biogenesis, dynamic fission, and fusion and mitophagy, which are initiated in response to various cues to maintain energetic homeostasis. These cellular events, which make up mitochondrial quality control, act with remarkable spatial precision, but what governs such spatial specificity is poorly understood. Herein, we demonstrate that specific isoforms of the cellular bioenergetic sensor, 5' AMP-activated protein kinase (AMPKα1/α2/ß2/γ1), are localized on the outer mitochondrial membrane, referred to as mitoAMPK, in various tissues in mice and humans. Activation of mitoAMPK varies across the reticulum in response to energetic stress, and inhibition of mitoAMPK activity attenuates exercise-induced mitophagy in skeletal muscle in vivo. Discovery of a mitochondrial pool of AMPK and its local importance for mitochondrial quality control underscores the complexity of sensing cellular energetics in vivo that has implications for targeting mitochondrial energetics for disease treatment.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Mitocôndrias/patologia , Mitofagia , Condicionamento Físico Animal , Proteínas Quinases Ativadas por AMP/genética , Animais , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo
3.
Entropy (Basel) ; 25(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37372233

RESUMO

In complex industrial environments, the vibration signal of the rolling bearing is covered by noise, which makes fault diagnosis inaccurate. In order to overcome the effect of noise on the signal, a rolling bearing fault diagnosis method based on the WOA-VMD (Whale Optimization Algorithm-Variational Mode Decomposition) and the GAT (Graph Attention network) is proposed to deal with end effect and mode mixing issues in signal decomposition. Firstly, the WOA is used to adaptively determine the penalty factor and decomposition layers in the VMD algorithm. Meanwhile, the optimal combination is determined and input into the VMD, which is used to decompose the original signal. Then, the Pearson correlation coefficient method is used to select IMF (Intrinsic Mode Function) components that have a high correlation with the original signal, and selected IMF components are reconstructed to remove the noise in the original signal. Finally, the KNN (K-Nearest Neighbor) method is used to construct the graph structure data. The multi-headed attention mechanism is used to construct the fault diagnosis model of the GAT rolling bearing in order to classify the signal. The results show an obvious noise reduction effect in the high-frequency part of the signal after the application of the proposed method, where a large amount of noise was removed. In the diagnosis of rolling bearing faults, the accuracy of the test set diagnosis in this study was 100%, which is higher than that of the four other compared methods, and the diagnosis accuracy rate of various faults reached 100%.

4.
Neurobiol Dis ; 169: 105737, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35452786

RESUMO

Altered mitochondrial DNA (mtDNA) occurs in neurodegenerative disorders like Alzheimer's disease (AD); how mtDNA synthesis is linked to neurodegeneration is poorly understood. We previously discovered Nutrient-induced Mitochondrial Activity (NiMA), an inter-organelle signaling pathway where nutrient-stimulated lysosomal mTORC1 activity regulates mtDNA replication in neurons by a mechanism sensitive to amyloid-ß oligomers (AßOs), a primary factor in AD pathogenesis (Norambuena et al., 2018). Using 5-ethynyl-2'-deoxyuridine (EdU) incorporation into mtDNA of cultured neurons, along with photoacoustic and mitochondrial metabolic imaging of cultured neurons and mouse brains, we show these effects being mediated by mTORC1-catalyzed T40 phosphorylation of superoxide dismutase 1 (SOD1). Mechanistically, tau, another key factor in AD pathogenesis and other tauopathies, reduced the lysosomal content of the tuberous sclerosis complex (TSC), thereby increasing NiMA and suppressing SOD1 activity and mtDNA synthesis. AßOs inhibited these actions. Dysregulation of mtDNA synthesis was observed in fibroblasts derived from tuberous sclerosis (TS) patients, who lack functional TSC and elevated SOD1 activity was also observed in human AD brain. Together, these findings imply that tau and SOD1 couple nutrient availability to mtDNA replication, linking mitochondrial dysfunction to AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Superóxido Dismutase-1 , Esclerose Tuberosa , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Mitocôndrias/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Esclerose Tuberosa/enzimologia , Esclerose Tuberosa/genética
5.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499163

RESUMO

Insufficient sleep is becoming increasingly common and contributes to many health issues. To combat sleepiness, caffeine is consumed daily worldwide. Thus, caffeine consumption and sleep restriction often occur in succession. The gut microbiome can be rapidly affected by either one's sleep status or caffeine intake, whereas the synergistic effects of a persistent caffeine-induced sleep restriction remain unclear. In this study, we investigated the impact of a chronic caffeine-induced sleep restriction on the gut microbiome and its metabolic profiles in mice. Our results revealed that the proportion of Firmicutes and Bacteroidetes was not altered, while the abundance of Proteobacteria and Actinobacteria was significantly decreased. In addition, the content of the lipids was abundant and significantly increased. A pathway analysis of the differential metabolites suggested that numerous metabolic pathways were affected, and the glycerophospholipid metabolism was most significantly altered. Combined analysis revealed that the metabolism was significantly affected by variations in the abundance and function of the intestinal microorganisms and was closely relevant to Proteobacteria and Actinobacteria. In conclusion, a long-term caffeine-induced sleep restriction affected the diversity and composition of the intestinal microbiota in mice, and substantially altered the metabolic profiles of the gut microbiome. This may represent a novel mechanism by which an unhealthy lifestyle such as mistimed coffee breaks lead to or exacerbates disease.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Camundongos , Animais , Cafeína/farmacologia , Fezes/microbiologia , Metaboloma , Bactérias/genética , Proteobactérias , Sono , RNA Ribossômico 16S/genética
6.
Am J Respir Cell Mol Biol ; 61(6): 765-775, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31596601

RESUMO

S-nitrosothiols (SNOs) are endogenous signaling molecules that have numerous beneficial effects on the airway via cyclic guanosine monophosphate-dependent and -independent processes. Healthy human airways contain SNOs, but SNO levels are lower in the airways of patients with cystic fibrosis (CF). In this study, we examined the interaction between SNOs and the molecular cochaperone C-terminus Hsc70 interacting protein (CHIP), which is an E3 ubiquitin ligase that targets improperly folded CF transmembrane conductance regulator (CFTR) for subsequent degradation. Both CFBE41o- cells expressing either wild-type or F508del-CFTR and primary human bronchial epithelial cells express CHIP. Confocal microscopy and IP studies showed the cellular colocalization of CFTR and CHIP, and showed that S-nitrosoglutathione inhibits the CHIP-CFTR interaction. SNOs significantly reduced both the expression and activity of CHIP, leading to higher levels of both the mature and immature forms of F508del-CFTR. In fact, SNO inhibition of the function and expression of CHIP not only improved the maturation of CFTR but also increased CFTR's stability at the cell membrane. S-nitrosoglutathione-treated cells also had more S-nitrosylated CHIP and less ubiquitinated CFTR than cells that were not treated, suggesting that the S-nitrosylation of CHIP prevents the ubiquitination of CFTR by inhibiting CHIP's E3 ubiquitin ligase function. Furthermore, the exogenous SNOs S-nitrosoglutathione diethyl ester and S-nitro-N-acetylcysteine increased the expression of CFTR at the cell surface. After CHIP knockdown with siRNA duplexes specific for CHIP, F508del-CFTR expression increased at the cell surface. We conclude that SNOs effectively reduce CHIP-mediated degradation of CFTR, resulting in increased F508del-CFTR expression on airway epithelial cell surfaces. Together, these findings indicate that S-nitrosylation of CHIP is a novel mechanism of CFTR correction, and we anticipate that these insights will allow different SNOs to be optimized as agents for CF therapy.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Processamento de Proteína Pós-Traducional , S-Nitrosotióis/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Aprotinina/farmacologia , Células Cultivadas , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Leupeptinas/farmacologia , Dobramento de Proteína , Estabilidade Proteica , Proteólise , Interferência de RNA , RNA Interferente Pequeno/farmacologia , S-Nitrosoglutationa/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
7.
Cytometry A ; 95(1): 110-121, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30604477

RESUMO

Redox changes in live HeLa cervical cancer cells after doxorubicin treatment can either be analyzed by a novel fluorescence lifetime microscopy (FLIM)-based redox ratio NAD(P)H-a2%/FAD-a1%, called fluorescence lifetime redox ratio or one of its components (NAD(P)H-a2%), which is actually driving that ratio and offering a simpler and alternative metric and are both compared. Auto-fluorescent NAD(P)H, FAD lifetime is acquired by 2- photon excitation and Tryptophan by 3-photon, at 4 time points after treatment up to 60 min demonstrating early drug response to doxorubicin. Identical Fields-of-view (FoV) at each interval allows single-cell analysis, showing heterogeneous responses to treatment, largely based on their initial control redox state. Based on a discrete ROI selection method, mitochondrial OXPHOS and cytosolic glycolysis are discriminated. Furthermore, putative FRET interaction and energy transfer between tryptophan residue carrying enzymes and NAD(P)H correlate with NAD(P)H-a2%, as does the NADPH/NADH ratio, highlighting a multi-parametric assay to track metabolic changes in live specimens. © 2019 International Society for Advancement of Cytometry.


Assuntos
Mitocôndrias/metabolismo , NADP/análise , NAD/análise , Triptofano/química , Citosol/efeitos dos fármacos , Citosol/metabolismo , Doxorrubicina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Flavina-Adenina Dinucleotídeo/análise , Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Células HeLa , Humanos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Mitocôndrias/efeitos dos fármacos , NAD/efeitos dos fármacos , NADP/efeitos dos fármacos , Imagem Óptica , Oxirredução , Fosforilação Oxidativa/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Análise de Célula Única/métodos
8.
Opt Express ; 24(13): 14596-607, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410612

RESUMO

Interest in time resolved flow cytometry is growing. In this paper, we collect time-resolved flow cytometry data and use it to create polar plots showing distributions that are a function of measured fluorescence decay rates from individual fluorescently-labeled cells and fluorescent microspheres. Phasor, or polar, graphics are commonly used in fluorescence lifetime imaging microscopy (FLIM). In FLIM measurements, the plotted points on a phasor graph represent the phase-shift and demodulation of the frequency-domain fluorescence signal collected by the imaging system for each image pixel. Here, we take a flow cytometry cell counting system, introduce into it frequency-domain optoelectronics, and process the data so that each point on a phasor plot represents the phase shift and demodulation of an individual cell or particle. In order to demonstrate the value of this technique, we show that phasor graphs can be used to discriminate among populations of (i) fluorescent microspheres, which are labeled with one fluorophore type; (ii) Chinese hamster ovary (CHO) cells labeled with one and two different fluorophore types; and (iii) Saccharomyces cerevisiae cells that express combinations of fluorescent proteins with different fluorescence lifetimes. The resulting phasor plots reveal differences in the fluorescence lifetimes within each sample and provide a distribution from which we can infer the number of cells expressing unique single or dual fluorescence lifetimes. These methods should facilitate analysis time resolved flow cytometry data to reveal complex fluorescence decay kinetics.


Assuntos
Microscopia de Fluorescência/métodos , Microesferas , Animais , Células CHO , Cricetulus , Corantes Fluorescentes , Cinética , Imagem Óptica
9.
Cytometry A ; 85(12): 999-1010, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25274073

RESUMO

Fluorescence lifetime measurements provide information about the fluorescence relaxation, or intensity decay, of organic fluorophores, fluorescent proteins, and other inorganic molecules that fluoresce. The fluorescence lifetime is emerging in flow cytometry and is helpful in a variety of multiparametric, single cell measurements because it is not impacted by nonlinearity that can occur with fluorescence intensity measurements. Yet time-resolved cytometry systems rely on major hardware modifications making the methodology difficult to reproduce. The motivation of this work is, by taking advantage of the dynamic nature of flow cytometry sample detection and applying digital signal processing methods, to measure fluorescence lifetimes using an unmodified flow cytometer. We collect a new lifetime-dependent parameter, referred to herein as the fluorescence-pulse-delay (FPD), and prove it is a valid representation of the average fluorescence lifetime. To verify we generated cytometric pulses in simulation, with light emitting diode (LED) pulsation, and with true fluorescence measurements of cells and microspheres. Each pulse is digitized and used in algorithms to extract an average fluorescence lifetime inherent in the signal. A range of fluorescence lifetimes is measurable with this approach including standard organic fluorophore lifetimes (∼1 to 22 ns) as well as small, simulated shifts (0.1 ns) under standard conditions (reported herein). This contribution demonstrates how digital data acquisition and signal processing can reveal time-dependent information foreshadowing the exploitation of full waveform analysis for quantification of similar photo-physical events within single cells.


Assuntos
Citometria de Fluxo/métodos , Microscopia de Fluorescência/métodos , Modelos Teóricos , Processamento de Sinais Assistido por Computador , Animais , Células CHO , Cricetulus , Citometria de Fluxo/instrumentação
10.
Adv Sci (Weinh) ; 11(23): e2305484, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572510

RESUMO

Delivering cargo to the central nervous system (CNS) remains a pharmacological challenge. For infectious diseases such as HIV, the CNS acts as a latent reservoir that is inadequately managed by systemic antiretrovirals (ARTs). ARTs thus cannot eradicate HIV, and given CNS infection, patients experience neurological deficits collectively referred to as "neuroHIV". Herein, the development of bioinspired ionic liquid-coated nanoparticles (IL-NPs) for in situ hitchhiking on red blood cells (RBCs) is reported, which enables 48% brain delivery of intracarotid arterial- infused cargo. Moreover, IL choline trans-2-hexenoate (CA2HA 1:2) demonstrates preferential accumulation in parenchymal microglia over endothelial cells post-delivery. This study further demonstrates successful loading of abacavir (ABC), an ART that is challenging to encapsulate, into IL-NPs, and verifies retention of antiviral efficacy in vitro. IL-NPs are not cytotoxic to primary human peripheral blood mononuclear cells (PBMCs) and the CA2HA 1:2 coating itself confers notable anti-viremic capacity. In addition, in vitro cell culture assays show markedly increased uptake of IL-NPs into neural cells compared to bare PLGA nanoparticles. This work debuts bioinspired ionic liquids as promising nanoparticle coatings to assist CNS biodistribution and has the potential to revolutionize the delivery of cargos (i.e., drugs, viral vectors) through compartmental barriers such as the blood-brain-barrier (BBB).


Assuntos
Encéfalo , Infecções por HIV , Líquidos Iônicos , Nanopartículas , Nanopartículas/química , Nanopartículas/administração & dosagem , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Líquidos Iônicos/química , Animais , Humanos , Infecções por HIV/tratamento farmacológico , Ratos , Sistemas de Liberação de Medicamentos/métodos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Camundongos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA