Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cytokine ; 181: 156671, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38943739

RESUMO

Nonalcoholic fatty liver disease (NAFLD), a metabolic disease associated with obesity and type 2 diabetes. Due to its complex pathogenesis, there are still limitations in the knowledge of the disease. To date, no drug has been approved to treat NAFLD. This study aims to explore the role and mechanism of Ebselen (EbSe) in NAFLD. A high-fat diet-induced mouse model of NAFLD was employed to investigate EbSe function in NAFLD mice by EbSe gavage and to regularly monitor the mouse body weight. HE and oil red O staining were performed, respectively, to detect the pathological damage and lipid accumulation in mouse liver tissues. The biochemical and ELISA kits were employed to measure the levels of ALT, AST, TG, TC, LDL-C, HDL-C and pro-inflammatory cytokines within mouse serum or liver tissue. The expression of key proteins of PPARα, fatty acid ß oxidation-related protein, PI3K/Akt and TLR4/JNK signaling pathway was detected by western blot. EbSe significantly downregulated body weight, liver weight and liver lipid accumulation in NAFLD mice and downregulated ALT, AST, TG, TC, LDL-C and increased HDL-C serum levels. EbSe upregulated the expression levels of PPARα and fatty acid ß oxidation-associated proteins CPT1α, ACOX1, UCP2 and PGC1α. EbSe promoted Akt and PI3K phosphorylation, and inhibited TLR4 expression and JNK phosphorylation. EbSe can upregulate PPARα to promote fatty acid ß-oxidation and improve hepatic lipid metabolism. Meanwhile, EbSe also activated PI3K/Akt and inhibited TLR4/JNK signaling pathway. EbSe is predicted to be an effective therapeutic drug for treating NAFLD.


Assuntos
Isoindóis , Metabolismo dos Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Compostos Organosselênicos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptor 4 Toll-Like , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor 4 Toll-Like/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Camundongos , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , Isoindóis/farmacologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Azóis/farmacologia , Azóis/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Dieta Hiperlipídica , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças
2.
Front Biosci (Landmark Ed) ; 27(9): 275, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36224027

RESUMO

BACKGROUND: The mortality rate from melanoma has been rising and hence new therapeutic approaches for this disease have received extensive attention, especially the search for novel therapeutic targets. The aim of this study was to find new targets for the treatment of melanoma through a bioinformatics and experimental approach. METHODS: First, we screened for differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) between melanoma and normal tissues using the TCGA-SKCM, GTEX, and GSE24996 datasets. Next, we identified epithelial-mesenchymal transition (EMT)-related DEGs and analyzed their expression levels and association with patient survival. The expression level of DEGs was then confirmed in normal human melanocytes and melanoma cells. Bioinformatics analysis was used to identify miRNAs that targeted the most highly expressed DEG, LGALS1, and their binding confirmed using dual luciferase. Enriched pathways for the LGALS1 target miR-22-3p were also analyzed. miR-22-3p was overexpressed in cells in order to investigate changes in cell activity and in related genes and proteins. Exosomes from human bone marrow mesenchymal stem cells (MSCs) were coated with miR-22-3p to examine its effect on EMT. RESULTS: The expression levels of LGALS1, CPXM1, and APLNR were higher in melanoma than in normal tissues and were associated with worse patient survival. The differential expression of these genes was confirmed using normal human skin melanocytes (PIG1) and human melanoma cells (WM-266-4). LGALS1 was the most differentially expressed gene between WM-266-4 and PIG1 cells, and was also predicted to be a target for miR-22-3p. The results of dual luciferase experiments confirmed that miR-22-3p could bind to LGALS1. Following the overexpression of miR-22-3p in WM-266-4 cells, the cell viability decreased, the expression levels of LGALS1, VIM and SNAI2 decreased, the expression level of CDH1 increased, and cell apoptosis increased. Transfection of miR-22-3p using exosomes resulted in similar effects. CONCLUSIONS: We identified three genes (LGALS1, CPXM1, APLNR) that showed a high level of differential expression in melanoma. LGALS1 is a target for miR-22-3p binding and this can inhibit the EMT of melanoma cells, thereby preventing the development of melanoma. Moreover, exosomes secreted by MSCs can be loaded with miR-22-3p, thus regulating the EMT process in melanoma cells.


Assuntos
Exossomos , Melanoma , Células-Tronco Mesenquimais , MicroRNAs , Receptores de Apelina/metabolismo , Transição Epitelial-Mesenquimal/genética , Exossomos/genética , Exossomos/metabolismo , Galectina 1/genética , Galectina 1/metabolismo , Humanos , Melanoma/genética , Melanoma/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA