Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 54(2): 188-99, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26106979

RESUMO

The transcription factor p53 is overexpressed in the lung of patients with emphysema, but it remains unclear if it has a deleterious or protective effect in disease progression. We investigated the role of p53 in the elastase-induced emphysema model and the molecular underlining mechanisms. Wild-type (WT) and p53(-/-) mice were instilled with pancreatic porcine elastase. We quantified emphysema (morphometric analysis), chemokine (C-C motif) ligand 2 (CCL2), and TNF-α in bronchoalveolar lavage (BAL) (ELISA), oxidative stress markers [heme oxygenase 1 (HO1), NAD(P)H dehydrogenase quinone 1 (NQO1), and quantitative RT-PCR], matrix metalloproteinase 12 (MMP12) expression, and macrophage apoptosis (cleaved caspase-3, immunofluorescence). p53 gene expression was up-regulated in the lung of elastase-instilled mice. p53 deletion aggravated elastase-induced emphysema severity, pulmonary inflammation (macrophage and neutrophil numbers and CCL2 and TNF-α levels in BAL), and lung oxidative stress. These findings, except for the increase in CCL2, were reproduced in WT mice transplanted with p53(-/-) bone marrow cells. The increased number of macrophages in p53(-/-) mice was not a consequence of reduced apoptosis or an excess of chemotaxis toward CCL2. Macrophage expression of MMP12 was higher in p53(-/-) mice compared with WT mice after elastase instillation. These findings provide evidence that p53(-/-) mice and WT mice grafted with p53(-/-) bone marrow cells are more prone to developing elastase-induced emphysema, supporting a protective role of p53, and more precisely p53 expressed in macrophages, against emphysema development. The pivotal role played by macrophages in this phenomenon may involve the MMP12-TNF-α pathway.


Assuntos
Pulmão/metabolismo , Macrófagos/metabolismo , Elastase Pancreática , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/metabolismo , Proteína Supressora de Tumor p53/deficiência , Animais , Apoptose , Transplante de Medula Óssea , Líquido da Lavagem Broncoalveolar/química , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Predisposição Genética para Doença , Heme Oxigenase-1/metabolismo , Pulmão/patologia , Macrófagos/patologia , Masculino , Metaloproteinase 12 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estresse Oxidativo , Fenótipo , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia , Enfisema Pulmonar/prevenção & controle , Transdução de Sinais , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/genética
2.
Arch Toxicol ; 89(9): 1543-56, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25098341

RESUMO

Manufactured nanomaterials (MNMs) have the potential to improve everyday life as they can be utilised in numerous medical applications and day-to-day consumer products. However, this increased use has led to concerns about the potential environmental and human health impacts. The protein p53 is a key transcription factor implicated in cellular defence and reparative responses to various stress factors. Additionally, p53 has been implicated in cellular responses following exposure to some MNMs. Here, the role of the MNM mediated p53 induction and activation and its downstream effects following exposure to five well-characterised materials [namely two types of TiO2, two carbon black (CB), and one single-walled carbon nanotube (SWCNT)] were investigated. MNM internalisation, cellular viability, p53 protein induction and activation, oxidative stress, inflammation and apoptosis were measured in murine cell line and primary pulmonary macrophage models. It was observed that p53 was implicated in the biological responses to MNMs, with oxidative stress associated with p53 activation (only following exposure to the SWCNT). We demonstrate that p53 acted as an antioxidant and anti-inflammatory in macrophage responses to SWCNT and CB NMs. However, p53 was neither involved in MNM-induced cellular toxicity, nor in the apoptosis induced by these MNMs. Moreover, the physicochemical characteristics of MNMs seemed to influence their biological effects-SWCNT the materials with the largest surface area and a fibrous shape were the most cytotoxic in this study and were capable of the induction and activation of p53.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Nanoestruturas/toxicidade , Nanotubos de Carbono/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Inflamação/patologia , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Titânio/administração & dosagem , Titânio/toxicidade , Proteína Supressora de Tumor p53/genética
3.
Am J Respir Crit Care Med ; 187(7): 703-14, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23328527

RESUMO

RATIONALE: Chronic obstructive pulmonary disease (COPD) is associated with lung fibroblast senescence, a process characterized by the irreversible loss of replicative capacity associated with the secretion of inflammatory mediators. However, the mechanisms of this phenomenon remain poorly defined. OBJECTIVES: The aim of this study was to analyze the role of prostaglandin E2 (PGE2), a prostaglandin known to be increased in COPD lung fibroblasts, in inducing senescence and related inflammation in vitro in lung fibroblasts and in vivo in mice. METHODS: Fibroblasts were isolated from patients with COPD and from smoker and nonsmoker control subjects. Senescence markers and inflammatory mediators were investigated in fibroblasts and in mice. MEASUREMENTS AND MAIN RESULTS: Lung fibroblasts from patients with COPD exhibited higher expression of PGE2 receptors EP2 and EP4 as compared with nonsmoker and smoker control subjects. Compared with both nonsmoker and smoker control subjects, during long-term culture, COPD fibroblasts displayed increased senescent markers (increased senescence associated-ß galactosidase activity, p16, and p53 expression and lower proliferative capacity), and an increased PGE2, IL-6, IL-8, growth-regulated oncogene (GRO), CX3CL1, and matrix metalloproteinase-2 protein and cyclooxygenase-2 and mPGES-1 mRNA expression. Using in vitro pharmacologic approaches and in vivo experiments in wild-type and p53(-/-) mice we demonstrated that PGE2 produced by senescent COPD fibroblasts is responsible for the increased senescence and related inflammation. PGE2 acts either in a paracrine or autocrine fashion by a pathway involving EP2 and EP4 prostaglandin receptors, cyclooxygenase-2-dependent reactive oxygen species production and signaling, and consecutive p53 activation. CONCLUSIONS: PGE2 is a critical component of an amplifying and self-perpetuating circle inducing senescence and inflammation in COPD fibroblasts. Modulating the described PGE2 signaling pathway could provide a new basis to dampen senescence and senescence-associated inflammation in COPD.


Assuntos
Envelhecimento/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Fibroblastos/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Comunicação Autócrina , Estudos de Casos e Controles , Células Cultivadas , Dinoprostona/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Genes p53/efeitos dos fármacos , Humanos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Comunicação Parácrina , Espécies Reativas de Oxigênio/metabolismo , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Estatísticas não Paramétricas
4.
Sci Rep ; 13(1): 25, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646720

RESUMO

Small airway remodeling (SAR) is a key phenomenon of airflow obstruction in smokers, leading to chronic obstructive pulmonary disease (COPD). SAR results in an increased thickness of small airway walls, with a combination of peribronchiolar fibrosis with increased fibrous tissue and accumulation of mesenchymal and epithelial cells. SAR pathogenesis is still unclear but recent data suggest that alterations in telomerase activity could represent a possible underlying mechanism of SAR. Our study was dedicated to identify a potential protective role of TA-65, a pharmacological telomerase activator, in a cigarette smoke (CS) model of SAR in mice, and to further precise if extra-telomeric effects of telomerase, involving oxidative stress modulation, could explain it. C57BL/6J mice were daily exposed to air or CS during 4 weeks with or without a concomitant administration of TA-65 starting 7 days before CS exposure. Morphological analyses were performed, and mucus production, myofibroblast differentiation, collagen deposition, as well as transforming growth factor-ß1 (TGF-ß1) expression in the small airway walls were examined. In addition, the effects of TA-65 treatment on TGF-ß expression, fibroblast-to-myofibroblast differentiation, reactive oxygen species (ROS) production and catalase expression and activity were evaluated in primary cultures of pulmonary fibroblasts and/or mouse embryonic fibroblasts in vitro. Exposure to CS during 4 weeks induced SAR in mice, characterized by small airway walls thickening and peribronchiolar fibrosis (increased deposition of collagen, expression of α-SMA in small airway walls), without mucus overproduction. Treatment of mice with TA-65 protected them from CS-induced SAR. This effect was associated with the prevention of CS-induced TGF-ß expression in vivo, the blockade of TGF-ß-induced myofibroblast differentiation, and the reduction of TGF-ß-induced ROS production that correlates with an increase of catalase expression and activity. Our findings demonstrate that telomerase is a critical player of SAR, probably through extra-telomeric anti-oxidant effects, and therefore provide new insights in the understanding and treatment of COPD pathogenesis.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Telomerase , Camundongos , Animais , Catalase/metabolismo , Telomerase/metabolismo , Remodelação das Vias Aéreas , Fumar Cigarros/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Fibroblastos/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Colágeno/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibrose
5.
Magn Reson Med ; 68(3): 898-904, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22162011

RESUMO

Ultrashort echo time (550 µs) MR imaging was implemented to track the emphysema development in mice lung challenged with elastase. Two parameters, namely, signal intensity and T 2, were used to monitor the disease evolution. Nine mice were imaged before and at 24 h as well as at 3 and 8 weeks after elastase instillation. Five mice instilled with saline served as controls. At week 8, the mean normalized signal intensity ± SD was 0.89 ± 0.20 for healthy controls and 0.64 ± 0.10 for animals with emphysema. Similarly, a reduced value of T 2 (1.27 ± 0.35 ms vs 0.96 ± 0.18 ms) was found in the emphysema group. The mean signal intensity drop and the reduction of T 2 were prominent at 3 weeks following elastase instillation and stabilized between 3 and 8 weeks. The results indicated an excellent agreement between MR findings and histological morphometry (signal intensity, r = -0.78, P = 0.004; T 2, r = -0.78, P = 0.001). This result shows that proton MRI allows structural changes at alveolar level to be monitored longitudinally. This technique, applied routinely in preclinical trials will represent a valuable tool for assessment of drug therapy efficacy.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Enfisema Pulmonar/patologia , Técnica de Subtração , Animais , Aumento da Imagem/métodos , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Lab Invest ; 91(3): 353-62, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20956973

RESUMO

Nitric oxide (NO) in combination with superoxide produces peroxynitrites and induces protein nitration, which participates in a number of chronic degenerative diseases. NO is produced at high levels in the human emphysematous lung, but its role in this disease is unknown. The aim of this study was to determine whether the NO synthases contribute to the development of elastase-induced emphysema in mice. nNOS, iNOS, and eNOS were quantified and immunolocalized in the lung after a tracheal instillation of elastase in mice. To determine whether eNOS or iNOS had a role in the development of emphysema, mice bearing a germline deletion of the eNOS and iNOS genes and mice treated with a pharmacological iNOS inhibitor were exposed to elastase. Protein nitration was determined by immunofluorescence, protein oxidation was determined by ELISA. Inflammation and MMP activity were quantified by cell counts, RT-PCR and zymography in bronchoalveolar lavage fluid. Cell proliferation was determined by Ki67 immunostaining. Emphysema was quantified morphometrically. iNOS and eNOS were diffusely upregulated in the lung of elastase-treated mice and a 12-fold increase in the number of 3-nitrotyrosine-expressing cells was observed. Over 80% of these cells were alveolar type 2 cells. In elastase-instilled mice, iNOS inactivation reduced protein nitration and increased protein oxidation but had no effect on inflammation, MMP activity, cell proliferation or the subsequent development of emphysema. eNOS inactivation had no effect. In conclusion, in the elastase-injured lung, iNOS mediates protein nitration in alveolar type 2 cells and alleviates oxidative injury. Neither eNOS nor iNOS are required for the development of elastase-induced emphysema.


Assuntos
Pulmão/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Oxidativo , Enfisema Pulmonar/metabolismo , Animais , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III/genética , Estresse Oxidativo/efeitos dos fármacos , Elastase Pancreática/toxicidade , Fagócitos/metabolismo , Enfisema Pulmonar/patologia , RNA Mensageiro/metabolismo
7.
Am J Pathol ; 177(3): 1356-64, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20696779

RESUMO

Oxidative stress contributes to the pathogenesis of Duchenne muscular dystrophy (DMD). Although they have been a model for DMD, mdx mice exhibit slowly developing cardiomyopathy. We hypothesized that disease process was delayed owing to the development of an adaptive mechanism against oxidative stress, involving glutathione synthesis. At 15 to 20 weeks of age, mdx mice displayed a 33% increase in blood glutathione levels compared with age-matched C57BL/6 mice. In contrast, cardiac glutathione content was similar in mdx and C57BL/6 mice as a result of the balanced increased expression of glutamate cysteine ligase catalytic and regulatory subunits ensuring glutathione synthesis in the mdx mouse heart, as well as increased glutathione peroxidase-1 using glutathione. Oral administration from 10 weeks of age of the glutamate cysteine ligase inhibitor, l-buthionine(S,R)-sulfoximine (BSO, 5 mmol/L), led to a 33% and 50% drop in blood and cardiac glutathione, respectively, in 15- to 20-week-old mdx mice. Moreover, 20-week-old BSO-treated mdx mice displayed left ventricular hypertrophy associated with diastolic dysfunction, discontinuities in beta-dystroglycan expression, micronecrosis and microangiopathic injuries. Examination of the glutathione status in four DMD patients showed that three displayed systemic glutathione deficiency as well. In conclusion, low glutathione resource hastens the onset of cardiomyopathy linked to a defect in dystrophin in mdx mice. This is relevant to the glutathione deficiency that DMD patients may suffer.


Assuntos
Cardiomiopatias/metabolismo , Distrofina/metabolismo , Glutationa/metabolismo , Miocárdio/metabolismo , Adulto , Análise de Variância , Animais , Cardiomiopatias/complicações , Cardiomiopatias/fisiopatologia , Distrofina/genética , Ecocardiografia , Coração/fisiopatologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas
8.
FASEB J ; 23(7): 2120-30, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19246487

RESUMO

Post-myocardial infarction (MI) heart failure is a major public health problem in Western countries and results from ischemia/reperfusion (IR)-induced cell death, remodeling, and contractile dysfunction. Ex vivo studies have demonstrated the cardioprotective anti-inflammatory effect of the cannabinoid type 2 (CB2) receptor agonists within hours after IR. Herein, we evaluated the in vivo effect of CB2 receptors on IR-induced cell death, fibrosis, and cardiac dysfunction and investigated the target role of cardiac myocytes and fibroblasts. The infarct size was increased 24 h after IR in CB2(-/-) vs. wild-type (WT) hearts and decreased when WT hearts were injected with the CB2 agonist JWH133 (3 mg/kg) at reperfusion. Compared with WT hearts, CB2(-/-) hearts showed widespread injury 3 d after IR, with enhanced apoptosis and remodeling affecting the remote myocardium. Finally, CB2(-/-) hearts exhibited exacerbated fibrosis, associated with left ventricular dysfunction 4 wk after IR, whereas their WT counterparts recovered normal function. Cardiac myocytes and fibroblasts isolated from CB2(-/-) hearts displayed a higher H(2)O(2)-induced death than WT cells, whereas 1 microM JWH133 triggered survival effects. Furthermore, H(2)O(2)-induced myofibroblast activation was increased in CB2(-/-) fibroblasts but decreased in 1 microM JWH133-treated WT fibroblasts, compared with that in WT cells. Therefore, CB2 receptor activation may protect against post-IR heart failure through direct inhibition of cardiac myocyte and fibroblast death and prevention of myofibroblast activation.


Assuntos
Cardiomiopatias/etiologia , Fibroblastos/citologia , Traumatismo por Reperfusão Miocárdica/complicações , Miocárdio/patologia , Miócitos Cardíacos/citologia , Receptor CB2 de Canabinoide/fisiologia , Animais , Sobrevivência Celular , Peróxido de Hidrogênio , Camundongos , Camundongos Knockout , Substâncias Protetoras , Receptor CB2 de Canabinoide/deficiência , Disfunção Ventricular Esquerda/etiologia
9.
Brain Pathol ; 17(1): 119-21, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17493047

RESUMO

A 42-year-old man was admitted to the neurosurgery department because of paraparesis and sensory deficits of both feet. A solitary exophytic lesion of the thoracic spine was seen on MRI, and angiography further revealed the presence of feeding and draining vessels and intra-lesional shunting. The preoperative diagnosis was spinal hemangioblastoma. A gross total resection was performed. By histological examination, the lesion was a tumor composed of neoplastic astrocytes and cells immunopositive for neuronal markers and CD34. The neuronal subpopulation was quite polymorphous and consisted of large anaplastic neurons including binucleate forms and smaller immature looking cells. Vessels were abundant and showed dysplastic changes such as sclerosis, calcium incrustations and extreme dilatation. Because of necrosis and marked proliferative activity, the tumor was considered a de novo malignant ganglioglioma (GG). In conformity with the diagnosis of malignancy, the tumor gave rise to extensive cerebrospinal deposits in the intracranial and spinal compartments 12 months post-diagnosis. De novo malignant GG of the spine are very rare tumors of which few cases are on record. Interestingly, in our case the rich malformative vasculature and the corresponding angiographic image were most compatible with descriptions of "mixed" angiogliomas. The diagnosis of spinal GGs should rely on both histologic hallmarks and unequivocal immunopositivity for several neuronal markers because of reported aberrant expression of synaptophysin by non-neoplastic spinal neurons.


Assuntos
Malformações Arteriovenosas/patologia , Ganglioglioma/patologia , Hemangioma/patologia , Neoplasias da Coluna Vertebral/patologia , Adulto , Malformações Arteriovenosas/complicações , Malformações Arteriovenosas/cirurgia , Ganglioglioma/irrigação sanguínea , Ganglioglioma/complicações , Ganglioglioma/cirurgia , Hemangioma/complicações , Hemangioma/cirurgia , Humanos , Masculino , Medula Espinal/irrigação sanguínea , Medula Espinal/patologia , Neoplasias da Coluna Vertebral/irrigação sanguínea , Neoplasias da Coluna Vertebral/complicações , Neoplasias da Coluna Vertebral/cirurgia , Vértebras Torácicas , Resultado do Tratamento
10.
Neuromuscul Disord ; 22(3): 252-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22071332

RESUMO

Dominant inherited Emery-Dreifuss muscular dystrophy and limb-girdle muscular dystrophy type 1B are due to mutations in the LMNA gene encoding lamin A/C and present similar life-threatening cardiac disease, the early diagnosis of which lacks reliable biomarkers. Glutathione depletion characterizes subjects with cardiac diseases of non-genetic aetiology. We examined blood glutathione in 22 LMNA-mutated subjects without altered left ventricular ejection fraction (LVEF>40%) measured by conventional echocardiography. Left and right ventricular (LV/RV) contractility was evaluated using echocardiography implemented with tissue-Doppler echography. Blood glutathione was positively correlated with LV and RV contractility (p<0.05), and was decreased by 23% in subjects with reduced LV/RV contractility compared to subjects with normal contractility. ROC analysis showed that blood glutathione reliably detected reduced LV/RV contractility (AUC-95% CI: 0.90 [0.76-1.04]; p=0.01). Blood glutathione decrease may allow the detection of reduced contractility in muscular dystrophic LMNA-mutated patients with still preserved LVEF.


Assuntos
Glutationa/sangue , Cardiopatias/sangue , Cardiopatias/genética , Lamina Tipo A/genética , Mutação de Sentido Incorreto/genética , Adolescente , Adulto , Estudos de Coortes , Estudos Cross-Over , Ecocardiografia , Ensaio de Imunoadsorção Enzimática/métodos , Saúde da Família , Feminino , Cardiopatias/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Estudos Retrospectivos , Estatísticas não Paramétricas , Volume Sistólico/fisiologia , Adulto Jovem
11.
PLoS One ; 4(3): e4871, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19319187

RESUMO

BACKGROUND: The tripeptide glutathione (L-gamma-glutamyl-cysteinyl-glycine) is essential to cell survival, and deficiency in cardiac and systemic glutathione relates to heart failure progression and cardiac remodelling in animal models. Accordingly, we investigated cardiac and blood glutathione levels in patients of different functional classes and with different structural heart diseases. METHODS: Glutathione was measured using standard enzymatic recycling method in venous blood samples obtained from 91 individuals, including 15 healthy volunteers and 76 patients of New York Heart Association (NYHA) functional class I to IV, undergoing cardiac surgery for coronary artery disease, aortic stenosis or terminal cardiomyopathy. Glutathione was also quantified in right atrial appendages obtained at the time of surgery. RESULTS: In atrial tissue, glutathione was severely depleted (-58%) in NYHA class IV patients compared to NYHA class I patients (P = 0.002). In patients with coronary artery disease, this depletion was related to the severity of left ventricular dysfunction (P = 0.006). Compared to healthy controls, blood glutathione was decreased by 21% in NYHA class I patients with structural cardiac disease (P<0.01), and by 40% in symptomatic patients of NYHA class II to IV (P<0.0001). According to the functional NYHA class, significant depletion in blood glutathione occurred before detectable elevation in blood sTNFR1, a marker of symptomatic heart failure severity, as shown by the exponential relationship between these two parameters in the whole cohort of patients (r = 0.88). CONCLUSIONS: This study provides evidence that cardiac and systemic glutathione deficiency is related to the functional status and structural cardiac abnormalities of patients with cardiac diseases. These data also suggest that blood glutathione test may be an interesting new biomarker to detect asymptomatic patients with structural cardiac abnormalities.


Assuntos
Doenças Cardiovasculares/diagnóstico , Glutationa/deficiência , Átrios do Coração/química , Cardiopatias Congênitas/diagnóstico , Índice de Gravidade de Doença , Adulto , Idoso , Doenças Cardiovasculares/cirurgia , Estudos de Casos e Controles , Feminino , Glutationa/análise , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/química , Disfunção Ventricular Esquerda
12.
J Mol Cell Cardiol ; 43(3): 344-53, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17707397

RESUMO

Deficiency in cellular thiol tripeptide glutathione (L-gamma glutamyl-cysteinyl-glycine) determines the severity of several chronic and inflammatory human diseases that may be relieved by oral treatment with the glutathione precursor N-acetylcysteine (NAC). Here, we showed that the left ventricle (LV) of human failing heart was depleted in total glutathione by 54%. Similarly, 2-month post-myocardial infarction (MI) rats, with established chronic heart failure (CHF), displayed deficiency in LV glutathione. One-month oral NAC treatment normalized LV glutathione, improved LV contractile function and lessened adverse LV remodelling in 3-month post-MI rats. Biochemical studies at two time-points of NAC treatment, 3 days and 1 month, showed that inhibition of the neutral sphingomyelinase (N-SMase), Bcl-2 depletion and caspase-3 activation, were key, early and lasting events associated with glutathione repletion. Attenuation of oxidative stress, downregulation of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) and its TNF-R1 receptor were significant after 1-month NAC treatment. These data indicate that, besides glutathione deficiency, N-SMase activation is associated with post-MI CHF progression, and that blockade of N-SMase activation participates to post-infarction failing heart recovery achieved by NAC treatment. NAC treatment in post-MI rats is a way to disrupt the vicious sTNF-alpha/TNF-R1/N-SMase cycle.


Assuntos
Acetilcisteína/uso terapêutico , Cardiotônicos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Ecocardiografia Doppler , Glutationa/deficiência , Glutationa/metabolismo , Masculino , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
13.
Am J Pathol ; 166(6): 1741-8, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15920159

RESUMO

To investigate the therapeutic potential of bone marrow transplantation in Duchenne muscular dystrophy, green fluorescent protein-positive (GFP+) bone marrow cells were transplanted into irradiated wild-type and dystrophin-deficient mdx mice. Tibialis anterior muscles showed fivefold to sixfold more GFP+ mononucleated cells and threefold to fourfold more GFP+ myofibers in mdx than in wild-type mice. In contrast, dystrophin expression in mdx mice remained within the level of nontransplanted mdx mice, and co-expression with GFP was rare. Longitudinal sections of 5000 myofibers showed 160 GFP+ fibers, including 9 that co-expressed dystrophin. GFP was always visualized as full-length sarcoplasmic fluorescence that exceeded the span of sample length (up to 1500 microm), whereas dystrophin expression was restricted to 11 to 28% of this length. Dystrophin expression span was much shorter in GFP+ fibers (116 +/- 46 microm) than in revertant fibers (654 +/- 409 microm). These data suggest that soluble GFP diffuses far from the fusion site with a pre-existing dystrophin(-) myofiber whereas dystrophin remains mainly expressed close to the site of fusion. Because restoration of dystrophin in whole muscle fiber length is required to expect functional improvement and clinical benefits for Duchenne muscular dystrophy, future applications of cell therapies to neuromuscular disorders could be more appropriately envisaged for replacement of defective soluble sarcoplasmic proteins.


Assuntos
Transplante de Medula Óssea , Distrofina/biossíntese , Proteínas de Fluorescência Verde/biossíntese , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Animal/terapia , Sarcolema/metabolismo , Animais , Citoplasma/química , Citoplasma/metabolismo , Distrofina/deficiência , Citometria de Fluxo , Terapia Genética , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/química , Sarcolema/química , Transgenes
14.
Am J Pathol ; 164(3): 773-9, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14982831

RESUMO

Skeletal muscle includes satellite cells, which reside beneath the muscle fiber basal lamina and mainly represent committed myogenic precursor cells, and multipotent stem cells of unknown origin that are present in muscle connective tissue, express the stem cell markers Sca-1 and CD34, and can differentiate into different cell types. We tracked bone marrow (BM)-derived stem cells in both muscle connective tissue and satellite cell niches of irradiated mice transplanted with green fluorescent protein (GFP)-expressing BM cells. An increasing number of GFP+ mononucleated cells, located both inside and outside of the muscle fiber basal lamina, were observed 1, 3, and 6 months after transplantation. Sublaminal cells expressed unambiguous satellite cell markers (M-cadherin, Pax7, NCAM) and fused into scattered GFP+ muscle fibers. In muscle connective tissue there were GFP+ cells located close to blood vessels that expressed the ScaI or CD34 stem-cell antigens. The rate of settlement of extra- and intralaminal compartments by BM-derived cells was compatible with the view that extralaminal cells constitute a reservoir of satellite cells. We conclude that both muscle satellite cells and stem cell marker-expressing cells located in muscle connective tissue can derive from BM in adulthood.


Assuntos
Células da Medula Óssea/fisiologia , Transplante de Medula Óssea , Tecido Conjuntivo/fisiologia , Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula , Citometria de Fluxo , Proteínas de Fluorescência Verde , Imuno-Histoquímica , Proteínas Luminescentes , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA