Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000220

RESUMO

Tauroursodeoxycholic acid (TUDCA) increases the influx of primary bile acids into the gut. Results obtained on animal models suggested that Firmicutes and Proteobacteria phyla are more resistant to bile acids in rats. As part of a pilot study investigating the role of probiotics supplementation in elderly people with home enteral nutrition (HEN), a case of a 92-year-old woman with HEN is reported in the present study. She lives in a nursing home and suffers from Alzheimer's disease (AD); the patient had been prescribed TUDCA for lithiasis cholangitis. The aim of this case report is therefore to investigate whether long-term TUDCA administration may play a role in altering the patient's gut microbiota (GM) and the impact of an antibiotic therapy on the diversity of microbial species. Using next generation sequencing (NGS) analysis of the bacterial 16S ribosomal RNA (rRNA) gene a dominant shift toward Firmicutes and a remodeling in Proteobacteria abundance was observed in the woman's gut microbiota. Considering the patient's age, health status and type of diet, we would have expected to find a GM with a prevalence of Bacteroidetes phylum. This represents the first study investigating the possible TUDCA's effect on human GM.


Assuntos
Antibacterianos , Nutrição Enteral , Microbioma Gastrointestinal , Ácido Tauroquenodesoxicólico , Humanos , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Tauroquenodesoxicólico/uso terapêutico , Idoso de 80 Anos ou mais , Nutrição Enteral/métodos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , RNA Ribossômico 16S/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/microbiologia
2.
Immun Ageing ; 20(1): 76, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111002

RESUMO

BACKGROUND: Coronavirus disease COVID-19 is a heterogeneous condition caused by SARS-CoV-2 infection. Generally, it is characterized by interstitial pneumonia that can lead to impaired gas-exchange, acute respiratory failure, and death, although a complex disorder of multi-organ dysfunction has also been described. The pathogenesis is complex, and a variable combination of factors has been described in critically ill patients. COVID-19 is a particular risk for older persons, particularly those with frailty and comorbidities. Blood bacterial DNA has been reported in both physiological and pathological conditions and has been associated with some haematological and laboratory parameters but, to date, no study has characterized it in hospitalized old COVID-19 patients The present study aimed to establish an association between blood bacterial DNA (BB-DNA) and clinical severity in old COVID-19 patients. RESULTS: BB-DNA levels were determined, by quantitative real-time PCRs targeting the 16S rRNA gene, in 149 hospitalized older patients (age range 65-99 years) with COVID-19. Clinical data, including symptoms and signs of infection, frailty status, and comorbidities, were assessed. BB-DNA was increased in deceased patients compared to discharged ones, and Cox regression analysis confirmed an association between BB-DNA and in-hospital mortality. Furthermore, BB-DNA was positively associated with the neutrophil count and negatively associated with plasma IFN-alpha. Additionally, BB-DNA was associated with diabetes. CONCLUSIONS: The association of BB-DNA with mortality, immune-inflammatory parameters and diabetes in hospitalized COVID-19 patients suggests its potential role as a biomarker of unfavourable outcomes of the disease, thus it could be proposed as a novel prognostic marker in the assessment of acute COVID-19 disease.

3.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047437

RESUMO

The homozygous genotype of the Longevity-Associated Variant (LAV) in Bactericidal/Permeability-Increasing Fold-Containing Family B member 4 (BPIFB4) is enriched in long-living individuals of three independent populations and its genetic transfer in C57BL/6J mice showed a delay in frailty progression and improvement of several biomarkers of aging and multiple aspects of health. The C57BL/6J strain is a suitable model for studying therapies aimed at extending healthy aging and longevity due to its relatively short lifespan and the availability of aging biomarkers. Epigenetic clocks based on DNA methylation profiles are reliable molecular biomarkers of aging, while frailty measurement tools are used to evaluate overall health during aging. In this study, we show that the systemic gene transfer of LAV-BPIFB4 in aged C57BL/6J mice was associated with a significant reduction in the epigenetic clock-based biological age, as measured by a three CpG clock method. Furthermore, LAV-BPIFB4 gene transfer resulted in an improvement of the Vitality Score with a reduction in the Frailty Index. These findings further support the use of LAV-BPIFB4 gene therapy to induce beneficial effects on epigenetic mechanisms associated with aging and frailty in aged mice, with potential implications for future therapies to prevent frailty in humans.


Assuntos
Fragilidade , Longevidade , Humanos , Camundongos , Animais , Idoso , Longevidade/genética , Fragilidade/genética , Camundongos Endogâmicos C57BL , Epigênese Genética , Biomarcadores , Terapia Genética , Metilação de DNA , Peptídeos e Proteínas de Sinalização Intercelular/genética
4.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047803

RESUMO

Herpesviridae reactivation such as cytomegalovirus (CMV) has been described in severe COVID-19 (COronaVIrusDisease-2019). This study aimed to understand if CMV reactivation in older COVID-19 patients is associated with increased inflammation and in-hospital mortality. In an observational single-center cohort study, 156 geriatric COVID-19 patients were screened for CMV reactivation by RT-PCR. Participants underwent a comprehensive clinical investigation that included medical history, functional evaluation, laboratory tests and cytokine assays (TNF-α, IFN-α, IL-6, IL-10) at hospital admission. In 19 (12.2%) of 156 COVID-19 patients, CMV reactivation was detected. Multivariate Cox regression models showed that in-hospital mortality significantly increased among CMV positive patients younger than 87 years (HR: 9.94, 95% CI: 1.66-59.50). Other factors associated with in-hospital mortality were C-reactive protein (HR: 1.17, 95% CI: 1.05-1.30), neutrophil count (HR: 1.20, 95% CI: 1.01-1.42) and clinical frailty scale (HR:1.54, 95% CI: 1.04-2.28). In patients older than 87 years, neutrophil count (HR: 1.13, 95% CI: 1.05-1.21) and age (HR: 1.15, 95% CI: 1.01-1.31) were independently associated with in-hospital mortality. CMV reactivation was also correlated with increased IFN-α and TNF-α serum levels, but not with IL-6 and IL-10 serum changes. In conclusion, CMV reactivation was an independent risk factor for in-hospital mortality in COVID-19 patients younger than 87 years old, but not in nonagenarians.


Assuntos
COVID-19 , Infecções por Citomegalovirus , Idoso de 80 Anos ou mais , Humanos , Idoso , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/complicações , Interleucina-10 , Estudos de Coortes , Interleucina-6 , Fator de Necrose Tumoral alfa , COVID-19/complicações , Ativação Viral , Estudos Retrospectivos
5.
Biol Proced Online ; 20: 22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479579

RESUMO

Tocotrienols (T3) have been shown to represent a very important part of the vitamin E family since they have opened new opportunities to prevent or treat a multitude of age-related chronic diseases. The beneficial effects of T3 include the amelioration of lipid profile, the promotion of Nrf2 mediated cytoprotective activity and the suppression of inflammation. All these effects may be the consequence of the ability of T3 to target multiple pathways. We here propose that these effects may be the result of a single target of T3, namely senescent cells. Indeed, T3 may act by a direct suppression of the senescence-associated secretory phenotype (SASP) produced by senescent cells, mediated by inhibition of NF-kB and mTOR, or may potentially remove the origin of the SASP trough senolysis (selective death of senescent cells). Further studies addressed to investigate the impact of T3 on cellular senescence "in vitro" as well as in experimental models of age-related diseases "in vivo" are clearly encouraged.

6.
Mediators Inflamm ; 2018: 4159013, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29618945

RESUMO

The reactivation of senescence in cancer and the subsequent clearance of senescent cells are suggested as therapeutic intervention in the eradication of cancer. Several natural compounds that activate Nrf2 (nuclear factor erythroid-derived 2-related factor 2) pathway, which is involved in complex cytoprotective responses, have been paradoxically shown to induce cell death or senescence in cancer. Promoting the cytoprotective Nrf2 pathway may be desirable for chemoprevention, but it might be detrimental in later stages and advanced cancers. However, senolytic activity shown by some Nrf2-activating compounds could be used to target senescent cancer cells (particularly in aged immune-depressed organisms) that escape immunosurveillance. We herein describe in vitro and in vivo effects of fifteen Nrf2-interacting natural compounds (tocotrienols, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, silybin, phenethyl isothiocyanate, sulforaphane, triptolide, allicin, berberine, piperlongumine, fisetin, and phloretin) on cellular senescence and discuss their use in adjuvant cancer therapy. In light of available literature, it can be concluded that the meaning and the potential of adjuvant therapy with natural compounds in humans remain unclear, also taking into account the existence of few clinical trials mostly characterized by uncertain results. Further studies are needed to investigate the therapeutic potential of those compounds that display senolytic activity.


Assuntos
Senescência Celular/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/metabolismo , Animais , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Modelos Moleculares
7.
Geroscience ; 46(2): 2531-2544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38008859

RESUMO

MultiMorbidity (MM), defined as the co-occurrence of two or more chronic conditions, is associated with poorer health outcomes, such as recurrent hospital readmission and mortality. As a group of conditions, cardiovascular disease (CVD) exemplifies several challenges of MM, and the identification of prognostic minimally invasive biomarkers to stratify mortality risk in patients affected by cardiovascular MM is a huge challenge. Circulating miRNAs associated to inflammaging and endothelial dysfunction, such as miR-17, miR-21-5p, and miR-126-3p, are expected to have prognostic relevance. We analyzed a composite profile of circulating biomarkers, including miR-17, miR-21-5p, and miR-126-3p, and routine laboratory biomarkers in a sample of 246 hospitalized geriatric patients selected for cardiovascular MM from the Report-AGE INRCA database and BioGER INRCA biobank, to evaluate the association with all-cause mortality during 31 days and 12 and 24 months follow-up. Circulating levels of miR-17, miR-126-3p, and some blood parameters, including neutrophil to lymphocyte ratio (NLR) and eGFR, were significantly associated with mortality in these patients. Overall, our results suggest that in a cohort of geriatric hospitalized patients affected by cardiovascular MM, lower circulating miR-17 and miR-126-3p levels could contribute to identify patients at higher risk of short- and medium-term mortality.


Assuntos
Sistema Cardiovascular , MicroRNA Circulante , MicroRNAs , Humanos , Idoso , Multimorbidade , Biomarcadores
8.
Mech Ageing Dev ; 219: 111934, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604436

RESUMO

The management of geriatric cardiovascular disease (CVD) patients with multimorbidity remains challenging and could potentially be improved by integrating clinical data with innovative prognostic biomarkers. In this context, the analysis of circulating analytes, including cell-free DNA (cfDNA), appears particularly promising. Here, we investigated circulating cfDNA (measured through the quantification of 247 bp and 115 bp Alu genomic fragments) in a cohort of 244 geriatric CVD patients with multimorbidity hospitalised for acute CVD or non-CVD events. Survival analysis showed a direct association between Alu 247 cfDNA abundance and risk of death, particularly evident in the first six months after admission for acute CVD events. Higher plasma cfDNA concentration was associated with mortality in the same period of time. The cfDNA integrity (Alu 247/115), although not associated with outcome, appeared to be useful in discriminating patients in whom Alu 247 cfDNA abundance is most effective as a prognostic biomarker. The cfDNA parameters were associated with several biochemical markers of inflammation and myocardial damage. In conclusion, an increase in plasma cfDNA abundance at hospital admission is indicative of a higher risk of death in geriatric CVD patients, especially after acute CVD events, and its analysis may be potentially useful for risk stratification.


Assuntos
Biomarcadores , Doenças Cardiovasculares , Ácidos Nucleicos Livres , Humanos , Masculino , Feminino , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/mortalidade , Idoso , Ácidos Nucleicos Livres/sangue , Biomarcadores/sangue , Idoso de 80 Anos ou mais , Prognóstico , Fatores de Risco
9.
Aging Dis ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38377022

RESUMO

COVID-19 remains a serious concern for elderly individuals with underlying comorbidities. SARS-CoV-2 can target and damage mitochondria, potentially leading to mutations in mitochondrial DNA (mtDNA). This study aimed to evaluate single nucleotide substitutions in mtDNA and analyze their correlation with inflammatory biomarkers in elderly COVID-19 patients. A total of 30 COVID-19 patients and 33 older adult controls without COVID-19 (aged over 65 years) were enrolled. mtDNA was extracted from buffy coat samples and sequenced using a chip-based resequencing system (MitoChip v2.0) which detects both homoplasmic and heteroplasmic mtDNA variants (40-60% heteroplasmy), and allows the assessment of low-level heteroplasmy (<10% heteroplasmy). Serum concentrations of IL-6, IFN-α, TNF-α and IL-10 were determined in patients by a high-sensitivity immunoassay. We found a higher burden of total heteroplasmic variants in COVID-19 patients compared to controls with a selective increment in ND1 and COIII genes. Low-level heteroplasmy was significantly elevated in COVID-19 patients, especially in genes of the respiratory complex I. Both heteroplasmic variant burden and low-level heteroplasmy were associated with increased levels of IL-6, TNF-α, and IFN-α. These findings suggest that SARS-CoV-2 may induce mtDNA mutations that are related to the degree of inflammation.

10.
Geriatr Gerontol Int ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037206

RESUMO

AIM: Chest computed tomography (CT) scan is useful to evaluate the type and extent of lung lesions in coronavirus disease 2019 (COVID-19) pneumonia. This study explored the association between radiological parameters and various circulating serum-derived markers, including microRNAs, in older patients with COVID-19 pneumonia. METHODS: A retrospective analysis was designed to study geriatric patients (≥75 years) with COVID-19 pneumonia, who underwent chest CT scan on admission, and for whom clinical data and serum samples were obtained. To quantify the extent of lung involvement, CT-score, the percentage of healthy lung (HL%), the percentage of ground glass opacity (GGO%), and the percentage of lung consolidation were assessed using computer-aided tools. The association of these parameters with two circulating microRNAs, miR-483-5p and miR-320b, previously identified as biomarkers of mortality risk in COVID-19 geriatric patients, was tested. RESULTS: A total of 73 patients with COVID-19 pneumonia were evaluable (median age 85 years; interquartile range 82-90 years). Among chest CT-derived parameters, the percentage of lung consolidation (HR 1.08, 95% CI 1.02-1.14), CT-score (HR 1.14, 95% CI 1.03-1.25), and HL% (HR 0.97, 95% CI 0.95-0.99) emerged as significant predictors of mortality, whereas non-significant trends toward increased mortality were observed in patients with higher GGO%. We also found a significant positive association between serum miR-483-5p and GGO% (correlation coefficient 0.28; P = 0.018) and a negative association with HL% (correlation coefficient -0.27; P = 0.023). CONCLUSIONS: Overall, the extent of lung consolidation can be confirmed as a prognostic parameter of COVID-19 pneumonia in older patients. Among various serum-derived markers, miR-483-5p can help in exploring the degree of lung involvement, due to its association with higher GGO% and lower HL%. Geriatr Gerontol Int 2024; ••: ••-••.

11.
Genomics ; 99(6): 340-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22495107

RESUMO

The analysis of the genetic variability associated to Alu sequences was hampered by the absence of genome-wide methodologies able to efficiently detect new polymorphisms/mutations among these repetitive elements. Here we describe two Alu insertion profiling (AIP) methods based on the hybridization of Alu-flanking genomic fragments on tiling microarrays. Protocols are designed to preferentially detect active Alu subfamilies. We tested AIP methods by analyzing chromosomes 1 and 6 in two genomic samples. In genomic regions covered by array-features, with a sensitivity of 2% (AIP1) -4% (AIP2) and 5% (AIP1) -8% (AIP2) for the old J and S Alu lineages respectively, we obtained a sensitivity of 67% (AIP1) -90% (AIP2) for the young Ya subfamily. Among the loci showing sample-to-sample differences, 5 (AIP1) -8 (AIP2) were associated to known Alu polymorphisms. Moreover, we were able to confirm by PCR and DNA sequencing 4 new intragenic Alu elements, polymorphic in 10 additional individuals.


Assuntos
Elementos Alu , Perfilação da Expressão Gênica/métodos , Genoma Humano , Mutagênese Insercional , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 6/genética , Elementos de DNA Transponíveis , Loci Gênicos , Humanos , Proteínas de Membrana/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo Genético , Análise de Sequência de DNA , Ubiquitina-Proteína Ligases/genética
12.
Geroscience ; 45(4): 2195-2211, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36702990

RESUMO

Frailty is an age-related condition characterized by a multisystem functional decline, increased vulnerability to stressors, and adverse health outcomes. Quantifying the degree of frailty in humans and animals is a health measure useful for translational geroscience research. Two frailty measurements, namely the frailty phenotype (FP) and the clinical frailty index (CFI), have been validated in mice and are frequently applied in preclinical research. However, these two tools are based on different concepts and do not necessarily identify the same mice as frail. In particular, the FP is based on a dichotomous classification that suffers from high sample size requirements and misclassification problems. Based on the monthly longitudinal non-invasive assessment of frailty in a large cohort of mice, here we develop an alternative scoring method, which we called physical function score (PFS), proposed as a continuous variable that resumes into a unique function, the five criteria included in the FP. This score would not only reduce misclassification of frailty but it also makes the two tools, PFS and CFI, integrable to provide an overall measurement of health, named vitality score (VS) in aging mice. VS displays a higher association with mortality than PFS or CFI and correlates with biomarkers related to the accumulation of senescent cells and the epigenetic clock. This longitudinal non-invasive assessment strategy and the VS may help to overcome the different sensitivity in frailty identification, reduce the sample size in longitudinal experiments, and establish the effectiveness of therapeutic/preventive interventions for frailty or other age-related diseases in geriatric animals.


Assuntos
Fragilidade , Humanos , Animais , Camundongos , Idoso , Idoso Fragilizado , Avaliação Geriátrica/métodos , Camundongos Endogâmicos C57BL , Envelhecimento
13.
Geroscience ; 45(6): 3267-3305, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37792158

RESUMO

Senescent cells may have a prominent role in driving inflammation and frailty. The impact of cellular senescence on frailty varies depending on the assessment tool used, as it is influenced by the criteria or items predominantly affected by senescent cells and the varying weights assigned to these items across different health domains. To address this challenge, we undertook a thorough review of all available studies involving gain- or loss-of-function experiments as well as interventions targeting senescent cells, focusing our attention on those studies that examined outcomes based on the individual frailty phenotype criteria or specific items used to calculate two humans (35 and 70 items) and one mouse (31 items) frailty indexes. Based on the calculation of a simple "evidence score," we found that the burden of senescent cells related to musculoskeletal and cerebral health has the strongest causal link to frailty. We deem that insight into these mechanisms may not only contribute to clarifying the role of cellular senescence in frailty but could additionally provide multiple therapeutic opportunities to help the future development of a desirable personalized therapy in these extremely heterogeneous patients.


Assuntos
Fragilidade , Humanos , Camundongos , Animais , Senescência Celular/genética , Fenótipo , Inflamação
14.
Viruses ; 15(1)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36680229

RESUMO

(1) Background: During the COVID-19 pandemic, rapid and reliable diagnostic tools are needed for detecting SARS-CoV-2 infection in urgent cases at admission to the hospital. We aimed to assess the performances of the rapid molecular VitaPCR™ test (Menarini Diagnostics) in a sample of older adults admitted to the Emergency Department of two Italian hospitals (2) Methods: The comparison between the rapid VitaPCR™ and the RT-PCR was performed in 1695 samples. Two naso-pharyngeal swab samplings from each individual were obtained and processed using the VitaPCR™ and the RT-PCR for the detection of SARS-CoV-2 (3) Results: VitaPCR™ exhibited good precision (<3% CV) and an almost perfect overall agreement (Cohen's K = 0.90) with the RT-PCR. The limit of detection of the VitaPCR™ was 4.1 copies/µL. Compared to the RT-PCR, the sensitivity, the specificity, and the positive and negative predictive values of VitaPCR™ were 83.4%, 99.9%, 99.2% and 98.3%, respectively (4) Conclusions: The VitaPCR™ showed similar sensitivity and specificity to other molecular-based rapid tests. This study suggests that the VitaPCR™ can allow the rapid management of patients within the Emergency Department. Nevertheless, it is advisable to obtain a negative result by a RT-PCR assay before admitting a patient to a regular ward.


Assuntos
COVID-19 , Humanos , Idoso , COVID-19/diagnóstico , SARS-CoV-2/genética , Pandemias , Teste para COVID-19 , Sensibilidade e Especificidade , Serviço Hospitalar de Emergência
15.
Cells ; 11(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36497059

RESUMO

One of the main challenges of current research on aging is to identify the complex epigenetic mechanisms involved in the acquisition of the cellular senescent phenotype. Despite some evidence suggested that epigenetic changes of DNA repetitive elements, including transposable elements (TE) sequences, are associated with replicative senescence of fibroblasts, data on different types of cells are scarce. We previously analysed genome-wide DNA methylation of young and replicative senescent human endothelial cells (HUVECs), highlighting increased levels of demethylated sequences in senescent cells. Here, we aligned the most significantly demethylated single CpG sites to the reference genome and annotated their localization inside TE sequences and found a significant hypomethylation of sequences belonging to the Long-Interspersed Element-1 (LINE-1 or L1) subfamilies L1M, L1P, and L1HS. To verify the hypothesis that L1 demethylation could be associated with increased transcription/activation of L1s and/or Alu elements (non-autonomous retroelements that usually depend on L1 sequences for reverse transcription and retrotransposition), we quantified the RNA expression levels of both L1 (generic L1 elements or site-specific L1PA2 on chromosome 14) and Alu elements in young and senescent HUVECs and human dermal fibroblasts (NHDFs). The RNA expression of Alu and L1 sequences was significantly increased in both senescent HUVECs and NHDFs, whereas the RNA transcript of L1PA2 on chromosome 14 was not significantly modulated in senescent cells. Moreover, we found an increased amount of TE DNA copies in the cytoplasm of senescent HUVECs and NHDFs. Our results support the hypothesis that TE, which are significantly increased in senescent cells, could be retrotranscribed to DNA sequences.


Assuntos
Elementos Alu , Células Endoteliais , Humanos , Elementos Alu/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , RNA
16.
Cells ; 11(16)2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-36010584

RESUMO

Cellular senescence is a hallmark of aging and a promising target for therapeutic approaches. The identification of senescent cells requires multiple biomarkers and complex experimental procedures, resulting in increased variability and reduced sensitivity. Here, we propose a simple and broadly applicable imaging flow cytometry (IFC) method. This method is based on measuring autofluorescence and morphological parameters and on applying recent artificial intelligence (AI) and machine learning (ML) tools. We show that the results of this method are superior to those obtained measuring the classical senescence marker, senescence-associated beta-galactosidase (SA-ß-Gal). We provide evidence that this method has the potential for diagnostic or prognostic applications as it was able to detect senescence in cardiac pericytes isolated from the hearts of patients affected by end-stage heart failure. We additionally demonstrate that it can be used to quantify senescence "in vivo" and can be used to evaluate the effects of senolytic compounds. We conclude that this method can be used as a simple and fast senescence assay independently of the origin of the cells and the procedure to induce senescence.


Assuntos
Inteligência Artificial , Senescência Celular , Envelhecimento , Biomarcadores , Citometria de Fluxo/métodos , Humanos
17.
Mech Ageing Dev ; 202: 111636, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122770

RESUMO

The stratification of mortality risk in COVID-19 patients remains extremely challenging for physicians, especially in older patients. Innovative minimally invasive molecular biomarkers are needed to improve the prediction of mortality risk and better customize patient management. In this study, aimed at identifying circulating miRNAs associated with the risk of COVID-19 in-hospital mortality, we analyzed serum samples of 12 COVID-19 patients by small RNA-seq and validated the findings in an independent cohort of 116 COVID-19 patients by qRT-PCR. Thirty-four significantly deregulated miRNAs, 25 downregulated and 9 upregulated in deceased COVID-19 patients compared to survivors, were identified in the discovery cohort. Based on the highest fold-changes and on the highest expression levels, 5 of these 34 miRNAs were selected for the analysis in the validation cohort. MiR-320b and miR-483-5p were confirmed to be significantly hyper-expressed in deceased patients compared to survived ones. Kaplan-Meier and Cox regression models, adjusted for relevant confounders, confirmed that patients with the 20% highest miR-320b and miR-483-5p serum levels had three-fold increased risk to die during in-hospital stay for COVID-19. In conclusion, high levels of circulating miR-320b and miR-483-5p can be useful as minimally invasive biomarkers to stratify older COVID-19 patients with an increased risk of in-hospital mortality.


Assuntos
COVID-19/sangue , COVID-19/mortalidade , MicroRNA Circulante/sangue , Mortalidade Hospitalar , Hospitalização , MicroRNAs/sangue , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , COVID-19/diagnóstico , COVID-19/genética , MicroRNA Circulante/genética , Feminino , Humanos , Masculino , MicroRNAs/genética , Valor Preditivo dos Testes , Prognóstico , RNA-Seq , Medição de Risco , Fatores de Risco , Fatores de Tempo , Regulação para Cima
18.
Curr Opin Pulm Med ; 17 Suppl 1: S3-10, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22209928

RESUMO

PURPOSE OF REVIEW: Chronic obstructive pulmonary disease (COPD) is characterized by an abnormal persistent inflammatory response to noxious environmental stimuli, particularly cigarette smoke. The determinants of the dysregulated immune responses, which play a role both in the onset and continuation of COPD, are largely unknown. We examined several molecular mechanisms regulating the inflammatory pathway, such as cytokine polymorphisms, miRNA expression, and DNA methylation in COPD and aging, with the aim to provide evidence supporting the view that aging of the immune system may predispose to COPD. RECENT FINDINGS: The incidence of COPD increases with age. The pathogenesis of the disease is linked to a chronic inflammation and involves the recruitment and regulation of innate and adaptive immune cells. A chronic systemic inflammation characterizes aging and has been correlated with many diseases, most of them age-related. SUMMARY: COPD and aging are associated with significant dysregulation of the immune system that leads to a chronic inflammatory response. The similar molecular mechanisms and the common genetic signature shared by COPD and aging suggest that immunosenescence may contribute to the development of COPD.


Assuntos
Envelhecimento , Inflamação/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumar/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/imunologia , Metilação de DNA , Feminino , Humanos , Inflamação/imunologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , MicroRNAs/metabolismo , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Fumar/epidemiologia , Fumar/imunologia , Fumar/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
BMC Bioinformatics ; 11: 593, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21143911

RESUMO

BACKGROUND: The analysis of Inter-Alu PCR patterns obtained from human genomic DNA samples is a promising technique for a simultaneous analysis of many genomic loci flanked by Alu repetitive sequences in order to detect the presence of genetic polymorphisms. Inter-Alu PCR products may be separated and analyzed by capillary electrophoresis using an automatic sequencer that generates a complex pattern of peaks. We propose an algorithmic method based on the Haar-Walsh Wavelet Packet Transformation (WPT) for an efficient detection of fingerprint-type patterns generated by PCR-based methodologies. We have tested our algorithmic approach on inter-Alu patterns obtained from the genomic DNA of three couples of monozygotic twins, expecting that the inter-Alu patterns of each twins couple will show differences due to unavoidable experimental variability. On the contrary the differences among samples of different twins are supposed to originate from genetic variability. Our goal is to automatically detect regions in the inter-Alu pattern likely associated to the presence of genetic polymorphisms. RESULTS: We show that the WPT algorithm provides a reliable tool to identify sample to sample differences in complex peak patterns, reducing the possible errors and limits associated to a subjective evaluation. The redundant decomposition of the WPT algorithm allows for a procedure of best basis selection which maximizes the pattern differences at the lowest possible scale. Our analysis points out few classifying signal regions that could indicate the presence of possible genetic polymorphisms. CONCLUSIONS: The WPT algorithm based on the Haar-Walsh wavelet is an efficient tool for a non-supervised pattern classification of inter-ALU signals provided by a genetic analyzer, even if it was not possible to estimate the power and false positive rate due to the lacking of a suitable data base. The identification of non-reproducible peaks is usually accomplished comparing different experimental replicates of each sample. Moreover, we remark that, albeit we developed and optimized an algorithm able to analyze patterns obtained through inter-Alu PCR, the method is theoretically applicable to whatever fingerprint-type pattern obtained analyzing anonymous DNA fragments through capillary electrophoresis, and it could be usefully applied on a wide range of fingerprint-type methodologies.


Assuntos
Elementos Alu/genética , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético , Análise de Sequência de DNA/métodos , Algoritmos , Sequência de Bases , DNA/química
20.
Biogerontology ; 11(5): 615-26, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20455022

RESUMO

Immunosenescence is characterized by a series of changes of immune pathways, including a chronic state of low-grade inflammation. Mounting evidence from experimental and clinical studies suggests that persistent inflammation increases the risk of cancer and the progression of the disease. Cancer vaccination, which came into view in the last years as the most intriguing means of activating an immune response capable of effectively hampering the progression of the preclinical stages of a tumour, has been shown to be less effective in older age than in young adults. Available evidence on the use of inhibitors of inflammation has indicated their potential enhancement of cancer vaccines, suggesting the possibility to improve the low effectiveness of cancer vaccines in old age employing pharmacological or natural compounds-based anti-inflammatory intervention. This review addresses the effects of age and inflammation on cancer development and progression, and speculates as to whether the modulation of inflammation may influence the response to cancer immunization.


Assuntos
Envelhecimento , Vacinas Anticâncer , Inflamação , Metilação de DNA , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA