Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inflamm Res ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842554

RESUMO

BACKGROUND AND AIMS: Intestinal fibrosis is a common complication of Inflammatory Bowel Disease (IBD), namely Crohn's disease (CD) and ulcerative colitis (UC), but the precise mechanism by which it occurs is incompletely understood hampering the development of effective therapeutic strategies. Here, we aimed at inducing and characterizing an inflammation-mediated fibrosis in patient-derived organoids (PDOs) issued from crypts isolated from colonic mucosal biopsies of IBD pediatric patients and age matched-control subjects (CTRLs). METHODS: Inflammatory-driven fibrosis was induced by exposing CTRL-, CD- and UC-PDOs to the pro-inflammatory cytokine TNF-α for one day, followed by a co-treatment with TNF-α and TGF-ß1 for three days. Fibrotic response was proven by analyzing inflammatory and fibrotic markers by RT-qPCR and immunofluorescence. Transcriptomic changes were assessed by RNA-sequencing. RESULTS: Co-treatment with TNF-α and TGF-ß1 caused in CTRL- and IBD-PDOs morphological changes towards a mesenchymal-like phenotype and up-regulation of inflammatory, mesenchymal, and fibrotic markers. Transcriptomic profiling highlighted that in all intestinal PDOs, regardless of the disease, the co-exposure to TNF-α and TGF-ß1 regulated EMT genes and specifically increased genes involved in positive regulation of cell migration. Finally, we demonstrated that CD-PDOs display a specific response to fibrosis compared to both CTRL- and UC-PDOs, mainly characterized by upregulation of nuclear factors controlling transcription. CONCLUSIONS: This study demonstrates that intestinal PDOs may develop an inflammatory-derived fibrosis thus representing a promising tool to study fibrogenesis in IBD. Fibrotic PDOs show increased expression of EMT genes. In particular, fibrotic CD-PDOs display a specific gene expression signature compared to UC and CTRL-PDOs.

2.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108260

RESUMO

Extracellular High-mobility group box 1 (HMGB1) contributes to the pathogenesis of inflammatory disorders, including inflammatory bowel diseases (IBD). Poly (ADP-ribose) polymerase 1 (PARP1) has been recently reported to promote HMGB1 acetylation and its secretion outside cells. In this study, the relationship between HMGB1 and PARP1 in controlling intestinal inflammation was explored. C57BL6/J wild type (WT) and PARP1-/- mice were treated with DSS to induce acute colitis, or with the DSS and PARP1 inhibitor, PJ34. Human intestinal organoids, which are originated from ulcerative colitis (UC) patients, were exposed to pro-inflammatory cytokines (INFγ + TNFα) to induce intestinal inflammation, or coexposed to cytokines and PJ34. Results show that PARP1-/- mice develop less severe colitis than WT mice, evidenced by a significant decrease in fecal and serum HMGB1, and, similarly, treating WT mice with PJ34 reduces the secreted HMGB1. The exposure of intestinal organoids to pro-inflammatory cytokines results in PARP1 activation and HMGB1 secretion; nevertheless, the co-exposure to PJ34, significantly reduces the release of HMGB1, improving inflammation and oxidative stress. Finally, HMGB1 release during inflammation is associated with its PARP1-induced PARylation in RAW264.7 cells. These findings offer novel evidence that PARP1 favors HMGB1 secretion in intestinal inflammation and suggest that impairing PARP1 might be a novel approach to manage IBD.


Assuntos
Colite , Proteína HMGB1 , Doenças Inflamatórias Intestinais , Poli(ADP-Ribose) Polimerase-1 , Animais , Humanos , Camundongos , Colite/induzido quimicamente , Citocinas , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Inflamação , Organoides , Poli(ADP-Ribose) Polimerase-1/genética
3.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142169

RESUMO

Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory disorders of the gastrointestinal tract. Chronic inflammation is the main factor leading to intestinal fibrosis, resulting in recurrent stenosis, especially in CD patients. Currently, the underlying molecular mechanisms of fibrosis are still unclear. ZNF281 is a zinc-finger transcriptional regulator that has been characterized as an epithelial-to-mesenchymal transition (EMT)-inducing transcription factor, suggesting its involvement in the regulation of pluripotency, stemness, and cancer. The aim of this study is to investigate in vivo and in vitro the role of ZNF281 in intestinal fibrogenesis. Intestinal fibrosis was studied in vivo in C57BL/6J mice with chronic colitis induced by two or three cycles of administration of dextran sulfate sodium (DSS). The contribution of ZNF281 to gut fibrosis was studied in vitro in the human colon fibroblast cell line CCD-18Co, activated by the pro-fibrotic cytokine TGFß1. ZNF281 was downregulated by siRNA transfection, and RNA-sequencing was performed to identify genes regulated by TGFß1 in activated colon fibroblasts via ZNF281. Results showed a marked increase of ZNF281 in in vivo murine fibrotic colon as well as in in vitro human colon fibroblasts activated by TGFß1. Moreover, abrogation of ZNF281 in TGFß1-treated fibroblasts affected the expression of genes belonging to specific pathways linked to fibroblast activation and differentiation into myofibroblasts. We demonstrated that ZNF281 is a key regulator of colon fibroblast activation and myofibroblast differentiation upon fibrotic stimuli by transcriptionally controlling extracellular matrix (ECM) composition, remodeling, and cell contraction, highlighting a new role in the onset and progression of gut fibrosis.


Assuntos
Colite , Doença de Crohn , Proteínas Repressoras/metabolismo , Animais , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colo/patologia , Doença de Crohn/metabolismo , Sulfato de Dextrana , Fibroblastos/metabolismo , Fibrose , Humanos , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Zinco/metabolismo
4.
EMBO Rep ; 20(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30591524

RESUMO

Telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) constitute the core telomerase enzyme that maintains the length of telomeres. Telomere maintenance is affected in a broad range of cancer and degenerative disorders. Taking advantage of gain- and loss-of-function approaches, we show that Argonaute 2 (AGO2) promotes telomerase activity and stimulates the association between TERT and TERC AGO2 depletion results in shorter telomeres as well as in lower proliferation rates in vitro and in vivo We also demonstrate that AGO2 interacts with TERC and with a newly identified sRNA (terc-sRNA), arising from the H/ACA box of TERC Notably, terc-sRNA is sufficient to enhance telomerase activity when overexpressed. Analyses of sRNA-Seq datasets show that terc-sRNA is detected in primary human tissues and increases in tumors as compared to control tissues. Collectively, these data uncover a new layer of complexity in the regulation of telomerase activity by AGO2 and might lay the foundation for new therapeutic targets in tumors and telomere diseases.


Assuntos
Proteínas Argonautas/metabolismo , RNA/genética , RNA/metabolismo , Telomerase/metabolismo , Animais , Proteínas Argonautas/genética , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Ativação Enzimática , Expressão Gênica , Loci Gênicos , Xenoenxertos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Conformação de Ácido Nucleico , Ligação Proteica , RNA/química , Telomerase/química , Telomerase/genética
5.
RNA Biol ; 18(12): 2226-2235, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980133

RESUMO

In the last decade, the field of epitranscriptomics highlighted a wide array of post-transcriptional modifications in human RNAs, including microRNAs (miRNAs). Recent reports showed that human miRNAs undergo cytosine methylation. We describe the first high-throughput NGS-based method (BS-miRNA-seq) and an analysis pipeline (MAmBA) to attain high-resolution mapping of (hydroxy)-methyl-5-cytosine ((h)m5C) modifications in human miRNAs. Our method uncovers that miRNAs undergo widespread cytosine modification in various sequence contexts.Furthermore, validation of our data with specific antibodies reveals both m5C and hm5C residues in human mature miRNAs. BS-miRNA-seq and MAmBA may contribute to the precise mapping of (h)m5C on miRNAs in various cell types and tissues, a key achievement towards the understanding of the functional implications of this modification in miRNAs. MAmBA is available for download at https://github.com/flcvlr/MAmBA.


Assuntos
Leucócitos Mononucleares/citologia , MicroRNAs/química , Análise de Sequência de RNA/métodos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/química , Ilhas de CpG , DNA Metiltransferase 3A/metabolismo , Células HEK293 , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Leucócitos Mononucleares/química
6.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923593

RESUMO

In the last decade, the widespread application of shotgun metagenomics provided extensive characterization of the bacterial "dark matter" of the gut microbiome, propelling the development of dedicated, standardized bioinformatic pipelines and the systematic collection of metagenomic data into comprehensive databases. The advent of next-generation sequencing also unravels a previously underestimated viral population (virome) present in the human gut. Despite extensive efforts to characterize the human gut virome, to date, little is known about the childhood gut virome. However, alterations of the gut virome in children have been linked to pathological conditions such as inflammatory bowel disease, type 1 diabetes, malnutrition, diarrhea and celiac disease.


Assuntos
Doença Celíaca/virologia , Diabetes Mellitus Tipo 1/virologia , Diarreia/virologia , Doenças Inflamatórias Intestinais/virologia , Mucosa Intestinal/virologia , Viroma , Doença Celíaca/microbiologia , Criança , Diabetes Mellitus Tipo 1/microbiologia , Diarreia/microbiologia , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Metagenoma
7.
Genome Res ; 26(3): 331-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26701625

RESUMO

DNA damage activates TP53-regulated surveillance mechanisms that are crucial in suppressing tumorigenesis. TP53 orchestrates these responses directly by transcriptionally modulating genes, including microRNAs (miRNAs), and by regulating miRNA biogenesis through interacting with the DROSHA complex. However, whether the association between miRNAs and AGO2 is regulated following DNA damage is not yet known. Here, we show that, following DNA damage, TP53 interacts with AGO2 to induce or reduce AGO2's association of a subset of miRNAs, including multiple let-7 family members. Furthermore, we show that specific mutations in TP53 decrease rather than increase the association of let-7 family miRNAs, reducing their activity without preventing TP53 from interacting with AGO2. This is consistent with the oncogenic properties of these mutants. Using AGO2 RIP-seq and PAR-CLIP-seq, we show that the DNA damage-induced increase in binding of let-7 family members to the RISC complex is functional. We unambiguously determine the global miRNA-mRNA interaction networks involved in the DNA damage response, validating them through the identification of miRNA-target chimeras formed by endogenous ligation reactions. We find that the target complementary region of the let-7 seed tends to have highly fixed positions and more variable ones. Additionally, we observe that miRNAs, whose cellular abundance or differential association with AGO2 is regulated by TP53, are involved in an intricate network of regulatory feedback and feedforward circuits. TP53-mediated regulation of AGO2-miRNA interaction represents a new mechanism of miRNA regulation in carcinogenesis.


Assuntos
Proteínas Argonautas/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , Interferência de RNA , RNA Mensageiro/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Doxorrubicina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Ligação Proteica , Transcrição Gênica
8.
Nucleic Acids Res ; 43(3): 1498-512, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25605800

RESUMO

Argonaute (AGO) proteins have a well-established role in post-transcriptional regulation of gene expression as key component of the RNA silencing pathways. Recent evidence involves AGO proteins in mammalian nuclear processes such as transcription and splicing, though the mechanistic aspects of AGO nuclear functions remain largely elusive. Here, by SILAC-based interaction proteomics, we identify the chromatin-remodelling complex SWI/SNF as a novel AGO2 interactor in human cells. Moreover, we show that nuclear AGO2 is loaded with a novel class of Dicer-dependent short RNAs (sRNAs), that we called swiRNAs, which map nearby the Transcription Start Sites (TSSs) bound by SWI/SNF. The knock-down of AGO2 decreases nucleosome occupancy at the first nucleosome located downstream of TSSs in a swiRNA-dependent manner. Our findings indicate that in human cells AGO2 binds SWI/SNF and a novel class of sRNAs to establish nucleosome occupancy on target TSSs.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Bases , Western Blotting , Linhagem Celular , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Humanos , RNA Interferente Pequeno/genética , Espectrometria de Massas em Tandem
9.
Lancet ; 385 Suppl 1: S15, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26312837

RESUMO

BACKGROUND: DNA damage transactivates tumour protein p53 (TP53)-regulated surveillance, crucial in suppressing tumorigenesis. TP53 mediates this process directly by transcriptionally modulating gene and microRNA (miRNA) expression and indirectly by regulating miRNA biogenesis. However, the role of TP53 in regulating miRNA-AGO2 loading and global changes in AGO2 binding to its gene targets in response to DNA damage are unknown. These processes might be novel mechanisms by which TP53 regulates miRNAs in response to DNA damage. METHODS: To show the network of miRNA-mRNA interactions that occur in response to DNA damage, we stimulated TP53 wild-type and null cell-lines with doxorubicin and performed RNA sequencing from total RNA (RNA-Seq) and AGO2-immunoprecipitated RNA (AGO2-RIP-Seq). We used a combined AGO2 RIP-seq and AGO2 PAR-CLIP-seq (photoactivatable-ribonucleoside-enhanced cross-linking and immunoprecipitation) approach to determine the exact sites of interaction between the AGO2-bound miRNAs and their mRNA targets. FINDINGS: TP53 directly associated with AGO2, and induced and reduced loading of a subset of miRNAs, including the lethal 7 (let-7) miRNA family members, onto AGO2 in response to DNA damage. Although mutated TP53 maintained its capacity to interact with AGO2, it mediated unloading instead of loading of let-7 family miRNAs, thereby reducing their activity. We determined the miRNA-mRNA interaction networks involved in the response to DNA damage both in the presence and absence of TP53. Furthermore, we showed that miRNAs whose cellular abundance or differential loading onto AGO2 was regulated by TP53 were involved in an intricate network of regulatory feedback and feedforward circuits that fine-tuned gene expression levels in response to DNA damage to permit the repair of DNA damage or initiation of programmed cell death. INTERPRETATION: Control of AGO2 loading by TP53 is a new mechanism of miRNA regulation in carcinogenesis. FUNDING: UK Medical Research Council, Action Against Cancer.

10.
J Crohns Colitis ; 17(1): 92-102, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36040453

RESUMO

BACKGROUND: Faecal biomarkers have emerged as important tools in managing of inflammatory bowel disease [IBD], which includes Crohn's disease [CD] and ulcerative colitis [UC]. AIM: To identify new biomarkers of gut inflammation in the stools of IBD patients using a proteomic approach. METHODS: Proteomic analysis of stools was performed in patients with both active CD and CD in remission and in controls by 2-DIGE and MALDI-TOF/TOF MS. An ELISA was used to confirm results in a second cohort of IBD patients and controls. RESULTS: 2-DIGE analysis detected 70 spots in the stools of patients with active CD or patients in remission CD and in controls. MALDI-TOF/TOF MS analysis identified 21 proteins with Chymotrypsin C, Gelsolin and Rho GDP-dissociation inhibitor 2 [RhoGDI2] best correlating with the levels of intestinal inflammation. Results were confirmed in a second cohort of IBD patients and controls [57 CD, 60 UC, 31 controls]. The identified faecal markers significantly correlated with the severity of intestinal inflammation in IBD patients [SES-CD in CD, Mayo endoscopic subscore in UC] [CD; Chymotrypsin-C: r = 0.64, p < 0.001; Gelsolin: r = 0.82, p < 0.001; RhoGDI2: r = 0.64, p < 0.001; UC; Chymotrypsin-C: r = 0.76, p < 0.001; Gelsolin: r = 0.75, p < 0.001; RhoGDI2: r = 0.63, p < 0.001]. Moreover, ROC analysis showed that Gelsolin [p < 0.0002] and RhoGDI2 [p < 0.0001] in CD, and RhoGDI2 [p = 0.0004] in UC, have higher sensitivity and specificity than faecal calprotectin in discriminating between patients and controls. CONCLUSIONS: We show for the first time that 2-DIGE is a reliable method to detect proteins in human stools. Three novel faecal biomarkers of gut inflammation have been identified that display good specificity and sensitivity for identifying IBD and significantly correlate with IBD severity.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Quimotripsina/metabolismo , Gelsolina/metabolismo , Proteômica , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/metabolismo , Mucosa Intestinal/metabolismo , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/metabolismo , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/metabolismo , Doença de Crohn/diagnóstico , Doença de Crohn/metabolismo , Biomarcadores/análise , Inflamação/metabolismo , Complexo Antígeno L1 Leucocitário/análise , Fezes/química , Índice de Gravidade de Doença
11.
Noncoding RNA ; 9(3)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37368333

RESUMO

Virus-encoded microRNAs were first reported in the Epstein-Barr virus in 2004. Subsequently, a few hundred viral miRNAs have been identified, mainly in DNA viruses belonging to the herpesviridae family. To date, only 30 viral miRNAs encoded by RNA viruses are reported by miRBase. Since the outbreak of the SARS-CoV-2 pandemic, several studies have predicted and, in some cases, experimentally validated miRNAs originating from the positive strand of the SARS-CoV-2 genome. By integrating NGS data analysis and qRT-PCR approaches, we found that SARS-CoV-2 also encodes for a viral miRNA arising from the minus (antisense) strand of the viral genome, in the region encoding for ORF1ab, herein referred to as SARS-CoV-2-miR-AS1. Our data show that the expression of this microRNA increases in a time course analysis of SARS-CoV-2 infected cells. Furthermore, enoxacin treatment enhances the accumulation of the mature SARS-CoV-2-miR-AS1 in SARS-CoV-2 infected cells, arguing for a Dicer-dependent processing of this small RNA. In silico analysis suggests that SARS-CoV-2-miR-AS1 targets a set of genes which are translationally repressed during SARS-CoV-2 infection. We experimentally validated that SARS-CoV-2-miR-AS1 targets FOS, thus repressing the AP-1 transcription factor activity in human cells.

12.
Blood ; 115(2): 265-73, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19965651

RESUMO

Activation of the T cell-mediated immune response has been associated with changes in the expression of specific microRNAs (miRNAs). However, the role of miRNAs in the development of an effective immune response is just beginning to be explored. This study focuses on the functional role of miR-146a in T lymphocyte-mediated immune response and provides interesting clues on the transcriptional regulation of miR-146a during T-cell activation. We show that miR-146a is low in human naive T cells and is abundantly expressed in human memory T cells; consistently, miR-146a is induced in human primary T lymphocytes upon T-cell receptor (TCR) stimulation. Moreover, we identified NF-kB and c-ETS binding sites as required for the induction of miR-146a transcription upon TCR engagement. Our results demonstrate that several signaling pathways, other than inflammation, are influenced by miR-146a. In particular, we provide experimental evidence that miR-146a modulates activation-induced cell death (AICD), acting as an antiapoptotic factor, and that Fas-associated death domain (FADD) is a target of miR-146a. Furthermore, miR-146a enforced expression impairs both activator protein 1 (AP-1) activity and interleukin-2 (IL-2) production induced by TCR engagement, thus suggesting a role of this miRNA in the modulation of adaptive immunity.


Assuntos
Imunidade Adaptativa/fisiologia , Regulação da Expressão Gênica/fisiologia , Interleucina-2/biossíntese , Ativação Linfocitária/fisiologia , MicroRNAs/metabolismo , Linfócitos T/metabolismo , Morte Celular/fisiologia , Proteína de Domínio de Morte Associada a Fas/imunologia , Proteína de Domínio de Morte Associada a Fas/metabolismo , Humanos , Interleucina-2/imunologia , Células Jurkat , MicroRNAs/imunologia , Proteínas Proto-Oncogênicas c-ets/imunologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Elementos de Resposta/fisiologia , Transdução de Sinais/fisiologia , Linfócitos T/citologia , Linfócitos T/imunologia , Fator de Transcrição AP-1/imunologia , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica/fisiologia
13.
OMICS ; 25(6): 336-341, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34037469

RESUMO

The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak demonstrates the potential of coronaviruses, especially bat-derived beta coronaviruses to rapidly escalate to a global pandemic that has caused deaths in the order of several millions already. The huge efforts put in place by the scientific community to address this emergency have disclosed how the implementation of new technologies is crucial in the prepandemic period to timely face future ecological crises. In this context, we argue that metagenomics and new approaches to understanding ecosystems and biodiversity offer veritable prospects to innovate therapeutics and diagnostics against novel and existing infectious agents. We discuss the opportunities and challenges associated with the science of metagenomics, specifically with an eye to inform and prevent future ecological crises and pandemics that are looming on the horizon in the 21st century.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/diagnóstico , Pandemias/prevenção & controle , Animais , Ecossistema , Humanos , Metagenômica/métodos , SARS-CoV-2/efeitos dos fármacos
14.
Cancers (Basel) ; 13(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34282776

RESUMO

MicroRNAs are pervasive regulators of gene expression at the post-transcriptional level in metazoan, playing key roles in several physiological and pathological processes. Accordingly, these small non-coding RNAs are also involved in cancer development and progression. Furthermore, miRNAs represent valuable diagnostic and prognostic biomarkers in malignancies. In the last twenty years, the role of RNA modifications in fine-tuning gene expressions at several levels has been unraveled. All RNA species may undergo post-transcriptional modifications, collectively referred to as epitranscriptomic modifications, which, in many instances, affect RNA molecule properties. miRNAs are not an exception, in this respect, and they have been shown to undergo several post-transcriptional modifications. In this review, we will summarize the recent findings concerning miRNA epitranscriptomic modifications, focusing on their potential role in cancer development and progression.

15.
Eur J Gastroenterol Hepatol ; 33(11): 1376-1386, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33470709

RESUMO

BACKGROUND: An altered gut microbiota profile has been widely documented in inflammatory bowel diseases (IBD). The intestinal microbial community has been more frequently investigated in the stools than at the level of the mucosa, while most of the studies have been performed in adults. We aimed to define the gut microbiota profile either by assessing fecal and colonic mucosa samples (inflamed or not) from pediatric IBD patients. PATIENTS AND METHODS: Fecal and colonic samples from pediatric IBD (Crohn's disease or ulcerative colitis) and controls were analyzed. The relative abundance of bacteria at phylum and genus/species levels and bacterial diversity were determined through 16S rRNA sequence-based of fecal and mucosal microbiota analysis. RESULTS: A total of 59 children with IBD (26 Crohn's disease, 33 ulcerative colitis) and 39 controls were analyzed. A clear separation between IBD and controls in the overall composition of fecal and mucosal microbiota was found, as well as a reduced bacterial richness in the fecal microbiota of IBD. At the phylum level, abundance of Proteobacteria and Actinobacteria occurred in fecal microbiota of IBD, while species with anti-inflammatory properties (i.e., Ruminococcus) were reduced. Fusobacterium prevailed in inflamed IBD areas in comparison to noninflamed and controls samples. CONCLUSION: Significant alterations in gut microbiota profile were shown in our IBD pediatric patients, in whom an abundance of species with a proinflammatory mucosal activity was clearly detected. An analysis of gut microbiota could be incorporated in designing personalized IBD treatment scenarios in future.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Microbiota , Adulto , Criança , Colite Ulcerativa/diagnóstico , Fezes , Humanos , Mucosa Intestinal , RNA Ribossômico 16S/genética
16.
Dig Liver Dis ; 52(2): 158-163, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31653522

RESUMO

BACKGROUND: Topical steroids are effective in eosinophilic esophagitis (EoE), but patients often show different tendencies to relapse. We assessed whether gene expression is associated with a sort of steroid dependency in EoE children. METHODS: Biopsy samples were prospectively collected on EoE children responding to topical steroids. Patients treated with viscous budesonide for 24 weeks were subsequently classified as early (6 months) or late (>6 months) relapsing. RNA was isolated from esophageal biopsies at the time of the relapse and analyzed by NGS for transcriptome profiling. RESULTS: Of 40 patients, 22 patients were considered for mRNA expression profile. Thirteen were included in the early-relapse group, and 9 were in the late-relapse. No significant difference was observed in the two groups for clinical, endoscopic or histological features. Using the mRNA expression profile we performed supervised clustering using the 10 top differentially expressed genes between early and late relapsing patients. The heatmap and PCA show a proper segregation among patients. SERPINB12 is the only gene attaining a significant differential expression between the two groups (FDR < 0.05). CONCLUSIONS: Different tendencies to relapse in EoE children responding to topical steroids might be related to altered mRNA expressions. SERPINB12 presented a significantly higher expression in the late relapse group and it deserves further investigations.


Assuntos
Budesonida/administração & dosagem , Esofagite Eosinofílica/genética , Perfilação da Expressão Gênica , Serpinas/genética , Esteroides/administração & dosagem , Adolescente , Biomarcadores , Budesonida/efeitos adversos , Criança , Esofagite Eosinofílica/tratamento farmacológico , Esôfago/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Projetos Piloto , RNA Mensageiro/genética , Recidiva , Esteroides/efeitos adversos
17.
Cell Cycle ; 18(10): 1056-1067, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31014212

RESUMO

Human telomerase holoenzyme consists of the catalytic component TERT and the template RNA TERC. However, a network of accessory proteins plays key roles in its assembly, localization and stability. Defects in genes involved in telomerase biology affect the renewal of critical stem cell populations and cause disorders such as telomeropathies. Moreover, activation of telomerase in somatic cells allows neoplastic cells to proliferate indefinitely, thus contributing to tumorigenesis. For these reasons, identification of new players involved in telomerase regulation is crucial for the determination of novel therapeutic targets and biomarkers. In the very last years, increasing evidence describes components of the RNAi machinery as a new layer of complexity in human telomerase activity. In this review, we will discuss how AGO2 and other proteins which collaborate with AGO2 in RNAi pathway play a pivotal role in TERC stability and function.


Assuntos
Proteínas Argonautas/fisiologia , Interferência de RNA , RNA/fisiologia , Telomerase/fisiologia , Proteínas Argonautas/metabolismo , Humanos , Modelos Genéticos , RNA/química , RNA/metabolismo , Telomerase/química , Telomerase/metabolismo
18.
OMICS ; 23(7): 327-333, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31188063

RESUMO

Metagenomics is not only one of the newest omics system science technologies but also one that has arguably the broadest set of applications and impacts globally. Metagenomics has found vast utility not only in environmental sciences, ecology, and public health but also in clinical medicine and looking into the future, in planetary health. In line with the One Health concept, metagenomics solicits collaboration between molecular biologists, geneticists, microbiologists, clinicians, computational biologists, plant biologists, veterinarians, and other health care professionals. Almost every ecological niche of our planet hosts an extremely diverse community of organisms that are still poorly characterized. Detailed characterization of the features of such communities is instrumental to our comprehension of ecological, biological, and clinical complexity. This expert review article evaluates how metagenomics is improving our knowledge of microbiota composition from environmental to human samples. Furthermore, we offer an analysis of the common technical and methodological challenges and potential pitfalls arising from metagenomics approaches, such as metagenomics study design, data processing, and interpretation. All in all, at this critical juncture of further growth of the metagenomics field, it is time to critically reflect on the lessons learned and the future prospects of next-generation metagenomics science, technology, and conceivable applications, particularly from the standpoint of a metagenomics methodology perspective.


Assuntos
Metagenômica/métodos , Animais , Big Data , Biodiversidade , Biologia Computacional/métodos , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Metagenoma , Técnicas Microbiológicas , Microbiologia/tendências , Microbiota
19.
Dig Liver Dis ; 51(10): 1366-1374, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31320306

RESUMO

BACKGROUND AND AIMS: Recent evidence implicates gut microbiota (GM) and immune alterations in autism spectrum disorders (ASD). We assess GM profile and peripheral levels of immunological, neuronal and bacterial molecules in ASD children and controls. Alarmin HMGB1 was explored as a non-invasive biomarker to monitor gastrointestinal (GI) symptoms. METHODS: Thirty ASD children and 14 controls entered into the study. GM metagenomic analysis was performed for 16 ASD patients and 7 controls. GM functional profile was assessed by GO term analysis. Blood levels of IL-1ß, TNFα, TGFß, IL-10, INFγ, IL-8, lipopolysaccharide, Neurotensin, Sortilin1 and GSSG/GSH ratio were analyzed in all subjects by ELISA. Fecal HMGB1 was analyzed by Western blot. RESULTS: We observed a significant decrease in bacterial diversity. Furthermore, 82 GO terms underrepresented in ASD. Four of them pointed at 3,3 phenylpropionate catabolism and were imputable to Escherichia coli (E. coli) group. Serum levels of TNFα, TGFß, NT, and SORT-1 increased in ASD patients. Fecal levels of HMGB1 correlated with GI sign severity in ASD children. CONCLUSIONS: We suggest that a decrease of E. coli might affect the propionate catabolism in ASD. We report occurrence of peripheral inflammation in ASD children. We propose fecal HMGB1 as a non-invasive biomarker to detect GI symptoms.


Assuntos
Transtorno do Espectro Autista/microbiologia , Gastroenteropatias/imunologia , Microbioma Gastrointestinal , Inflamação , Transtorno do Espectro Autista/imunologia , Transtorno do Espectro Autista/fisiopatologia , Estudos de Casos e Controles , Criança , Desenvolvimento Infantil , Pré-Escolar , Comorbidade , Citocinas/sangue , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Feminino , Humanos , Masculino , Fenilpropionatos/metabolismo
20.
OMICS ; 22(4): 248-254, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29652573

RESUMO

The analysis of microbiota composition in humans, animals, and built environments is important because of emerging roles and applications in a broad range of disease and ecological phenotypes. Next Generation Sequencing is the current method of choice to characterize microbial community composition. The taxonomic profile of a microbial community can be obtained either by shotgun analysis of random DNA fragments or through 16S ribosomal RNA gene (rDNA) amplicon sequencing. It has been previously shown that the 16S rDNA amplicon sequencing approach yields quantitatively and qualitatively different results compared to shotgun metagenomics when the two techniques are used to assess microbial community composition on the same samples. However, most of such comparisons were either based on the recovery of 16S rDNA sequences in the shotgun metagenomics data or limited to a single microbiome or synthetic samples. Direct comparison of shotgun metagenomics and 16S rDNA amplicon sequencing on the same samples was performed only once in the recent literature, suggesting that the two methods yield comparable results. Here, we set out to compare the outcome of these two alternative approaches to the microbiome characterization in human gut microbiomes from stool samples. To this end, we processed six different samples with both techniques. We report here that shotgun next generation sequencing metagenomics allows much deeper characterization of the microbiome complexity, allowing identification of a larger number of species for each sample, compared to 16S rDNA amplicon sequencing. Further comparative studies in independent samples are called for.


Assuntos
Microbioma Gastrointestinal , Metagenoma , Metagenômica , RNA Ribossômico 16S , Adolescente , Criança , Biologia Computacional/métodos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Metagenômica/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA