Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Psychiatry ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361127

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative condition and the most common type of dementia, characterised by pathological accumulation of extracellular plaques and intracellular neurofibrillary tangles that mainly consist of amyloid-ß (Aß) and hyperphosphorylated tau aggregates, respectively. Previous studies in mouse models with a targeted knock-out of the microtubule-associated protein tau (Mapt) gene demonstrated that Aß-driven toxicity is tau-dependent. However, human cellular models with chronic tau lowering remain unexplored. In this study, we generated stable tau-depleted human induced pluripotent stem cell (iPSC) isogenic panels from two healthy individuals using CRISPR-Cas9 technology. We then differentiated these iPSCs into cortical neurons in vitro in co-culture with primary rat cortical astrocytes before conducting electrophysiological and imaging experiments for a wide range of disease-relevant phenotypes. Both AD brain derived and recombinant Aß were used in this study to elicit toxic responses from the iPSC-derived cortical neurons. We showed that tau depletion in human iPSC-derived cortical neurons caused considerable reductions in neuronal activity without affecting synaptic density. We also observed neurite outgrowth impairments in two of the tau-depleted lines used. Finally, tau depletion protected neurons from adverse effects by mitigating the impact of exogenous Aß-induced hyperactivity, deficits in retrograde axonal transport of mitochondria, and neurodegeneration. Our study established stable human iPSC isogenic panels with chronic tau depletion from two healthy individuals. Cortical neurons derived from these iPSC lines showed that tau is essential in Aß-driven hyperactivity, axonal transport deficits, and neurodegeneration, consistent with studies conducted in Mapt-/- mouse models. These findings highlight the protective effects of chronic tau lowering strategies in AD pathogenesis and reinforce the potential in clinical settings. The tau-depleted human iPSC models can now be applied at scale to investigate the involvement of tau in disease-relevant pathways and cell types.

2.
Hum Reprod ; 33(7): 1331-1341, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850888

RESUMO

STUDY QUESTION: Does germline selection (besides random genetic drift) play a role during the transmission of heteroplasmic pathogenic mitochondrial DNA (mtDNA) mutations in humans? SUMMARY ANSWER: We conclude that inheritance of mtDNA is mutation-specific and governed by a combination of random genetic drift and negative and/or positive selection. WHAT IS KNOWN ALREADY: mtDNA inherits maternally through a genetic bottleneck, but the underlying mechanisms are largely unknown. Although random genetic drift is recognized as an important mechanism, selection mechanisms are thought to play a role as well. STUDY DESIGN, SIZE, DURATION: We determined the mtDNA mutation loads in 160 available oocytes, zygotes, and blastomeres of five carriers of the m.3243A>G mutation, one carrier of the m.8993T>G mutation, and one carrier of the m.14487T>C mutation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Mutation loads were determined in PGD samples using PCR assays and analysed mathematically to test for random sampling effects. In addition, a meta-analysis has been performed on mutation load transmission data in the literature to confirm the results of the PGD samples. MAIN RESULTS AND THE ROLE OF CHANCE: By applying the Kimura distribution, which assumes random mechanisms, we found that mtDNA segregations patterns could be explained by variable bottleneck sizes among all our carriers (moment estimates ranging from 10 to 145). Marked differences in the bottleneck size would determine the probability that a carrier produces offspring with mutations markedly different than her own. We investigated whether bottleneck sizes might also be influenced by non-random mechanisms. We noted a consistent absence of high mutation loads in all our m.3243A>G carriers, indicating non-random events. To test this, we fitted a standard and a truncated Kimura distribution to the m.3243A>G segregation data. A Kimura distribution truncated at 76.5% heteroplasmy has a significantly better fit (P-value = 0.005) than the standard Kimura distribution. For the m.8993T>G mutation, we suspect a skewed mutation load distribution in the offspring. To test this hypothesis, we performed a meta-analysis on published blood mutation levels of offspring-mother (O-M) transmission for the m.3243A>G and m.8993T>G mutations. This analysis revealed some evidence that the O-M ratios for the m.8993T>G mutation are different from zero (P-value <0.001), while for the m.3243A>G mutation there was little evidence that the O-M ratios are non-zero. Lastly, for the m.14487T>G mutation, where the whole range of mutation loads was represented, we found no indications for selective events during its transmission. LARGE SCALE DATA: All data are included in the Results section of this article. LIMITATIONS, REASON FOR CAUTION: The availability of human material for the mutations is scarce, requiring additional samples to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS: Our data show that non-random mechanisms are involved during mtDNA segregation. We aimed to provide the mechanisms underlying these selection events. One explanation for selection against high m.3243A>G mutation loads could be, as previously reported, a pronounced oxidative phosphorylation (OXPHOS) deficiency at high mutation loads, which prohibits oogenesis (e.g. progression through meiosis). No maximum mutation loads of the m.8993T>G mutation seem to exist, as the OXPHOS deficiency is less severe, even at levels close to 100%. In contrast, high mutation loads seem to be favoured, probably because they lead to an increased mitochondrial membrane potential (MMP), a hallmark on which healthy mitochondria are being selected. This hypothesis could provide a possible explanation for the skewed segregation pattern observed. Our findings are corroborated by the segregation pattern of the m.14487T>C mutation, which does not affect OXPHOS and MMP significantly, and its transmission is therefore predominantly determined by random genetic drift. Our conclusion is that mutation-specific selection mechanisms occur during mtDNA inheritance, which has implications for PGD and mitochondrial replacement therapy. STUDY FUNDING/COMPETING INTEREST(S): This work has been funded by GROW-School of Oncology and Developmental Biology. The authors declare no competing interests.


Assuntos
Blastômeros/metabolismo , DNA Mitocondrial/genética , Mutação em Linhagem Germinativa , Oócitos/metabolismo , Adulto , DNA Mitocondrial/metabolismo , Feminino , Células Germinativas/metabolismo , Humanos , Masculino , Fosforilação Oxidativa
3.
Autophagy ; 19(2): 692-705, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35786165

RESUMO

The accumulation of toxic protein aggregates in multiple neurodegenerative diseases is associated with defects in the macroautophagy/autophagy-lysosome pathway. The amelioration of disease phenotypes across multiple models of neurodegeneration can be achieved through modulating the master regulator of lysosome function, TFEB (transcription factor EB). Using a novel multi-parameter high-throughput screen for cytoplasmic:nuclear translocation of endogenous TFEB and the related transcription factor TFE3, we screened the Published Kinase Inhibitor Set 2 (PKIS2) library as proof of principle and to identify kinase regulators of TFEB and TFE3. Given that TFEB and TFE3 are responsive to cellular stress we have established assays for cellular toxicity and lysosomal function, critical to ensuring the identification of hit compounds with only positive effects on lysosome activity. In addition to AKT inhibitors which regulate TFEB localization, we identified a series of quinazoline-derivative compounds that induced TFEB and TFE3 translocation. A novel series of structurally-related analogs was developed, and several compounds induced TFEB and TFE3 translocation at higher potency than previously screened compounds. KINOMEscan and cell-based KiNativ kinase profiling revealed high binding for the PRKD (protein kinase D) family of kinases, suggesting good selectivity for these compounds. We describe and utilize a cellular target-validation platform using CRISPRi knockdown and orthogonal PRKD inhibitors to demonstrate that the activity of these compounds is independent of PRKD inhibition. The more potent analogs induced subsequent upregulation of the CLEAR gene network and cleared pathological HTT protein in a cellular model of proteinopathy, demonstrating their potential to alleviate neurodegeneration-relevant phenotypes. Abbreviations: AD: Alzheimer disease; AK: adenylate kinase; CLEAR: coordinated lysosomal expression and regulation; CQ: chloroquine; HD: Huntington disease; PD: Parkinson disease; PKIS2: Published Kinase Inhibitor Set 2; PRKD: protein kinase D; TFEB: transcription factor EB.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica , Núcleo Celular/metabolismo , Lisossomos/metabolismo
4.
Neurol Clin Pract ; 10(1): 40-46, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32190419

RESUMO

BACKGROUND: Strong evidence of mitochondrial dysfunction exists for both familial and sporadic Parkinson disease (PD). A simple test, reliably identifying mitochondrial dysfunction, could be important for future stratified medicine trials in PD. We previously undertook a comparison of serum biomarkers in classic mitochondrial diseases and established that serum growth differentiation factor 15 (GDF-15) outperforms fibroblast growth factor 21 (FGF-21) when distinguishing patients with mitochondrial diseases from healthy controls. This study aimed to systematically assess serum FGF-21 and GDF-15, together with mitochondrial DNA (mtDNA) copy number levels in peripheral blood cells from patients with PD and healthy controls, to determine whether these measures could act as a biomarker of PD. METHODS: One hundred twenty-one patients with PD and 103 age-matched healthy controls were recruited from a single center. Serum FGF-21 and GDF-15, along with blood mtDNA copy number, were quantified using established assays. RESULTS: There were no meaningful differences identified for any of the measures when comparing patients with PD with healthy controls. This highlights a lack of diagnostic sensitivity that is incompatible with these measures being used as biomarkers for PD. CONCLUSION: In this study, serum FGF-21, serum GDF-15, and blood mtDNA levels were similar in patients with PD and healthy controls and therefore unlikely to be satisfactory indicators of mitochondrial dysfunction in patients with PD. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that serum FGF-21, serum GDF-15, and blood mtDNA copy number levels do not distinguish patients with PD from healthy controls. There was no diagnostic uncertainty between patients with PD and healthy controls.

5.
Stem Cell Reports ; 14(5): 940-955, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32359446

RESUMO

The Parkinson's disease-associated gene, LRRK2, is also associated with immune disorders and infectious disease and is expressed in immune subsets. Here, we characterize a platform for interrogating the expression and function of endogenous LRRK2 in authentic human phagocytes using human induced pluripotent stem cell-derived macrophages and microglia. Endogenous LRRK2 is expressed and upregulated by interferon-γ in these cells, including a 187-kDa cleavage product. Using LRRK2 knockout and G2019S isogenic repair lines, we find that LRRK2 is not involved in initial phagocytic uptake of bioparticles but is recruited to LAMP1+/RAB9+ "maturing" phagosomes, and LRRK2 kinase inhibition enhances its residency at the phagosome. Importantly, LRRK2 is required for RAB8a and RAB10 recruitment to phagosomes, implying that LRRK2 operates at the intersection between phagosome maturation and recycling pathways in these professional phagocytes.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Macrófagos/metabolismo , Fagossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Diferenciação Celular , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Interferon gama/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Macrófagos/citologia , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo
6.
Prog Neurobiol ; 187: 101772, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32058042

RESUMO

Mechanistic disease stratification will be crucial to develop a precision medicine approach for future disease modifying therapy in sporadic Parkinson's disease (sPD). Mitochondrial and lysosomal dysfunction are key mechanisms in the pathogenesis of sPD and therefore promising targets for therapeutic intervention. We investigated mitochondrial and lysosomal function in skin fibroblasts of 100 sPD patients and 50 age-matched controls. A combination of cellular assays, RNA-seq based pathway analysis and genotyping was applied. Distinct subgroups with mitochondrial (mito-sPD) or lysosomal (lyso-sPD) dysfunction were identified. Mitochondrial dysfunction correlated with reduction in complex I and IV protein levels. RNA-seq based pathway analysis revealed marked activation of the lysosomal pathway with enrichment for lysosomal disease gene variants in lyso-sPD. Conversion of fibroblasts to induced neuronal progenitor cells and subsequent differentiation into tyrosine hydroxylase positive neurons confirmed and further enhanced both mitochondrial and lysosomal abnormalities. Treatment with ursodeoxycholic acid improved mitochondrial membrane potential and intracellular ATP levels even in sPD patient fibroblast lines with comparatively mild mitochondrial dysfunction. The results of our study suggest that in-depth phenotyping and focussed assessment of putative neuroprotective compounds in peripheral tissue are a promising approach towards disease stratification and precision medicine in sPD.


Assuntos
Fibroblastos/patologia , Lisossomos/patologia , Mitocôndrias/patologia , Doença de Parkinson/patologia , Idoso , Diferenciação Celular , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fenótipo , Transcriptoma , Ácido Ursodesoxicólico/farmacologia
7.
Mitochondrion ; 11(5): 686-92, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21635974

RESUMO

Mutations of mitochondrial DNA (mtDNA) cause a wide array of multisystem disorders, particularly affecting organs with high energy demands. Typically only a proportion of the total mtDNA content is mutated (heteroplasmy), and high percentage levels of mutant mtDNA are associated with a more severe clinical phenotype. MtDNA is inherited maternally and the heteroplasmy level in each one of the offspring is often very different to that found in the mother. The mitochondrial genetic bottleneck hypothesis was first proposed as the explanation for these observations over 20 years ago. Although the precise bottleneck mechanism is still hotly debated, the regulation of cellular mtDNA content is a key issue. Here we review current understanding of the factors regulating the amount of mtDNA within cells and discuss the relevance of these findings to our understanding of the inheritance of mtDNA heteroplasmy.


Assuntos
Variações do Número de Cópias de DNA , Desenvolvimento Embrionário/genética , Genoma Mitocondrial , Mitocôndrias/genética , Animais , Replicação do DNA/genética , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Nucleosídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
8.
PLoS One ; 6(12): e29088, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22194994

RESUMO

Androgens drive the onset and progression of prostate cancer (PCa) by modulating androgen receptor (AR) transcriptional activity. Although several microarray-based studies have identified androgen-regulated genes, here we identify in-parallel global androgen-dependent changes in both gene and alternative mRNA isoform expression by exon-level analyses of the LNCaP transcriptome. While genome-wide gene expression changes correlated well with previously-published studies, we additionally uncovered a subset of 226 novel androgen-regulated genes. Gene expression pathway analysis of this subset revealed gene clusters associated with, and including the tyrosine kinase LYN, as well as components of the mTOR (mammalian target of rapamycin) pathway, which is commonly dysregulated in cancer. We also identified 1279 putative androgen-regulated alternative events, of which 325 (∼25%) mapped to known alternative splicing events or alternative first/last exons. We selected 30 androgen-dependent alternative events for RT-PCR validation, including mRNAs derived from genes encoding tumour suppressors and cell cycle regulators. Of seven positively-validating events (∼23%), five events involved transcripts derived from alternative promoters of known AR gene targets. In particular, we found a novel androgen-dependent mRNA isoform derived from an alternative internal promoter within the TSC2 tumour suppressor gene, which is predicted to encode a protein lacking an interaction domain required for mTOR inhibition. We confirmed that expression of this alternative TSC2 mRNA isoform was directly regulated by androgens, and chromatin immunoprecipitation indicated recruitment of AR to the alternative promoter region at early timepoints following androgen stimulation, which correlated with expression of alternative transcripts. Together, our data suggest that alternative mRNA isoform expression might mediate the cellular response to androgens, and may have roles in clinical PCa.


Assuntos
Androgênios/farmacologia , Éxons/genética , Perfilação da Expressão Gênica , Genoma Humano/genética , Neoplasias da Próstata/genética , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética , Linhagem Celular Tumoral , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Neoplásicos/genética , Humanos , Ligantes , Masculino , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/patologia , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais/genética , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
9.
Discov Med ; 8(41): 74-80, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19788872

RESUMO

Prostate cancer is the most common cancer seen in aging males in the Western world, and is a major clinical challenge in uro-oncology due to biological heterogeneity. Recent advances in molecular medicine suggest that the genetic composition of a prostate tumor contributes significantly to the complexity of the disease. An important genetic mechanism underlying biological diversity is alternative pre-mRNA splicing, which is thought to affect approximately 95% of transcripts derived from protein-encoding genes. During alternative splicing, coding (exons) and non-coding (introns) regions of pre-messenger RNA (pre-mRNA) transcripts derived from a single gene are rearranged to generate several mRNAs species, which are translated into distinct protein isoforms with differing biological functions. Recent emerging evidence suggests that prostate cancer-specific aberrant and alternative splicing may contribute to the biological heterogeneity of the disease. Furthermore, identification of prostate cancer-specific splice variants may yield novel biomarkers and targets for therapy to improve patient care and clinical outcome.


Assuntos
Processamento Alternativo/fisiologia , Neoplasias da Próstata/genética , Processamento Alternativo/genética , Humanos , Masculino , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/terapia , Isoformas de Proteínas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA