Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 67(1): 124-136, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924378

RESUMO

AIMS/HYPOTHESIS: Inflammation induces beta cell dysfunction and demise but underlying molecular mechanisms remain unclear. The apolipoprotein L (APOL) family of genes has been associated with innate immunity and apoptosis in non-pancreatic cell types, but also with metabolic syndrome and type 2 diabetes mellitus. Here, we hypothesised that APOL genes play a role in inflammation-induced beta cell damage. METHODS: We used single-cell transcriptomics datasets of primary human pancreatic islet cells to study the expression of APOL genes upon specific stress conditions. Validation of the findings was carried out in EndoC-ßH1 cells and primary human islets. Finally, we performed loss- and gain-of-function experiments to investigate the role of APOL genes in beta cells. RESULTS: APOL genes are expressed in primary human beta cells and APOL1, 2 and 6 are strongly upregulated upon inflammation via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. APOL1 overexpression increases endoplasmic reticulum stress while APOL1 knockdown prevents cytokine-induced beta cell death and interferon-associated response. Furthermore, we found that APOL genes are upregulated in beta cells from donors with type 2 diabetes compared with donors without diabetes mellitus. CONCLUSIONS/INTERPRETATION: APOLs are novel regulators of islet inflammation and may contribute to beta cell damage during the development of diabetes. DATA AVAILABILITY: scRNAseq data generated by our laboratory and used in this study are available in the Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo/ ), accession number GSE218316.


Assuntos
Apolipoproteína L1 , Inflamação , Células Secretoras de Insulina , Humanos , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia
2.
J Cell Sci ; 135(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35006275

RESUMO

Insulin secretion in pancreatic ß-cells is regulated by cortical complexes that are enriched at the sites of adhesion to extracellular matrix facing the vasculature. Many components of these complexes, including bassoon, RIM, ELKS and liprins, are shared with neuronal synapses. Here, we show that insulin secretion sites also contain the non-neuronal proteins LL5ß (also known as PHLDB2) and KANK1, which, in migrating cells, organize exocytotic machinery in the vicinity of integrin-based adhesions. Depletion of LL5ß or focal adhesion disassembly triggered by myosin II inhibition perturbed the clustering of secretory complexes and attenuated the first wave of insulin release. Although previous analyses in vitro and in neurons have suggested that secretory machinery might assemble through liquid-liquid phase separation, analysis of endogenously labeled ELKS in pancreatic islets indicated that its dynamics is inconsistent with such a scenario. Instead, fluorescence recovery after photobleaching and single-molecule imaging showed that ELKS turnover is driven by binding and unbinding to low-mobility scaffolds. Both the scaffold movements and ELKS exchange were stimulated by glucose treatment. Our findings help to explain how integrin-based adhesions control spatial organization of glucose-stimulated insulin release.


Assuntos
Células Secretoras de Insulina , Proteínas do Citoesqueleto/metabolismo , Exocitose , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo
3.
Cytotherapy ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38703154

RESUMO

One of the challenges in Good Manufacturing Practice (GMP)-compliant human induced pluripotent stem cell (hiPSC) production is the validation of quality control (QC) tests specific for hiPSCs, which are required for GMP batch release. This study presents a comprehensive description of the validation process for hiPSC-specific GMP-compliant QC assays; more specifically, the validation of assays to assess the potential presence of residual episomal vectors (REVs), the expression of markers of the undifferentiated state and the directed differentiation potential of hiPSCs. Critical aspects and specific acceptance criteria were formulated in a validation plan prior to assay validation. Assay specificity, sensitivity and reproducibility were tested, and the equipment used for each assay was subjected to performance qualification. A minimum input of 20 000 cells (120 ng of genomic DNA) was defined for accurate determination of the presence of REVs. Furthermore, since vector loss in hiPSC lines is a passage-dependent process, we advocate screening for REVs between passages eight and 10, as testing at earlier passages might lead to unnecessary rejection of hiPSC lines. The cutoff value for assessment of markers of the undifferentiated state was set to the expression of at least three individual markers on at least 75% of the cells. When multi-color flow cytometry panels are used, a fluorescence minus one control is advised to ensure the control for fluorescent spread. For the assay to assess the directed differentiation potential, the detection limit was set to two of three positive lineage-specific markers for each of the three individual germ layers. All of our assays proved to be reproducible and specific. Our data demonstrate that our implemented analytical procedures are suitable as QC assays for the batch release of GMP-compliant hiPSCs.

4.
Cytotherapy ; 26(6): 556-566, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38483359

RESUMO

BACKGROUND AIMS: Few human induced pluripotent stem cell (hiPSC) lines are Good Manufacturing Practice (GMP)-compliant, limiting the clinical use of hiPSC-derived products. Here, we addressed this by establishing and validating an in-house platform to produce GMP-compliant hiPSCs that would be appropriate for producing both allogeneic and autologous hiPSC-derived products. METHODS: Our standard research protocol for hiPSCs production was adapted and translated into a GMP-compliant platform. In addition to the generation of GMP-compliant hiPSC, the platform entails the methodology for donor recruitment, consent and screening, donor material procurement, hiPSCs manufacture, in-process control, specific QC test validation, QC testing, product release, hiPSCs storage and stability testing. For platform validation, one test run and three production runs were performed. Highest-quality lines were selected to establish master cell banks (MCBs). RESULTS: Two MCBs were successfully released under GMP conditions. They demonstrated safety (sterility, negative mycoplasma, endotoxins <5.0 EU/mL and negative adventitious agents), cell identity (>75% of cells expressing markers of undifferentiated state, identical STR profile, normal karyotype in >20 metaphases), purity (negative residual vectors and no plasmid integration in the genome) and potency (expression of at least two of the three markers for each of the three germ layers). In addition, directed differentiation to somitoids (skeletal muscle precursors) and six potential clinical products from all three germ layers was achieved: pancreatic islets (endoderm), kidney organoids and cardiomyocytes (mesoderm), and keratinocytes, GABAergic interneurons and inner-ear organoids (ectoderm). CONCLUSIONS: We successfully developed and validated a platform for generating GMP-compliant hiPSC lines. The two MCBs released were shown to differentiate into clinical products relevant for our own and other regenerative medicine interests.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Técnicas de Cultura de Células/métodos , Linhagem Celular
5.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731945

RESUMO

The main hallmark in the development of both type 1 and type 2 diabetes is a decline in functional ß-cell mass. This decline is predominantly attributed to ß-cell death, although recent findings suggest that the loss of ß-cell identity may also contribute to ß-cell dysfunction. This phenomenon is characterized by a reduced expression of key markers associated with ß-cell identity. This review delves into the insights gained from single-cell omics research specifically focused on ß-cell identity. It highlights how single-cell omics based studies have uncovered an unexpected level of heterogeneity among ß-cells and have facilitated the identification of distinct ß-cell subpopulations through the discovery of cell surface markers, transcriptional regulators, the upregulation of stress-related genes, and alterations in chromatin activity. Furthermore, specific subsets of ß-cells have been identified in diabetes, such as displaying an immature, dedifferentiated gene signature, expressing significantly lower insulin mRNA levels, and expressing increased ß-cell precursor markers. Additionally, single-cell omics has increased insight into the detrimental effects of diabetes-associated conditions, including endoplasmic reticulum stress, oxidative stress, and inflammation, on ß-cell identity. Lastly, this review outlines the factors that may influence the identification of ß-cell subpopulations when designing and performing a single-cell omics experiment.


Assuntos
Células Secretoras de Insulina , Análise de Célula Única , Células Secretoras de Insulina/metabolismo , Humanos , Análise de Célula Única/métodos , Animais , Genômica/métodos , Estresse do Retículo Endoplasmático/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia
6.
Diabetologia ; 66(11): 2075-2086, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37581620

RESUMO

AIMS/HYPOTHESIS: The inflammatory milieu characteristic of insulitis affects translation fidelity and generates defective ribosomal products (DRiPs) that participate in autoimmune beta cell destruction in type 1 diabetes. Here, we studied the role of early innate cytokines (IFNα) and late immune adaptive events (IFNÉ£) in insulin DRiP-derived peptide presentation to diabetogenic CD8+ T cells. METHODS: Single-cell transcriptomics of human pancreatic islets was used to study the composition of the (immuno)proteasome. Specific inhibition of the immunoproteasome catalytic subunits was achieved using siRNA, and antigenic peptide presentation at the cell surface of the human beta cell line EndoC-ßH1 was monitored using peptide-specific CD8 T cells. RESULTS: We found that IFNγ induces the expression of the PSMB10 transcript encoding the ß2i catalytic subunit of the immunoproteasome in endocrine beta cells, revealing a critical role in insulin DRiP-derived peptide presentation to T cells. Moreover, we showed that PSMB10 is upregulated in a beta cell subset that is preferentially destroyed in the pancreases of individuals with type 1 diabetes. CONCLUSIONS/INTERPRETATION: Our data highlight the role of the degradation machinery in beta cell immunogenicity and emphasise the need for evaluation of targeted immunoproteasome inhibitors to limit beta cell destruction in type 1 diabetes. DATA AVAILABILITY: The single-cell RNA-seq dataset is available from the Gene Expression Omnibus (GEO) using the accession number GSE218316 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE218316 ).


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Insulina/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Autoimunidade , Ilhotas Pancreáticas/metabolismo , Interferon-alfa/farmacologia , Células Secretoras de Insulina/metabolismo , Interferon gama/farmacologia , Interferon gama/metabolismo
7.
Diabetologia ; 66(5): 884-896, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36884057

RESUMO

AIMS/HYPOTHESIS: Transcriptome analyses revealed insulin-gene-derived transcripts in non-beta endocrine islet cells. We studied alternative splicing of human INS mRNA in pancreatic islets. METHODS: Alternative splicing of insulin pre-mRNA was determined by PCR analysis performed on human islet RNA and single-cell RNA-seq analysis. Antisera were generated to detect insulin variants in human pancreatic tissue using immunohistochemistry, electron microscopy and single-cell western blot to confirm the expression of insulin variants. Cytotoxic T lymphocyte (CTL) activation was determined by MIP-1ß release. RESULTS: We identified an alternatively spliced INS product. This variant encodes the complete insulin signal peptide and B chain and an alternative C-terminus that largely overlaps with a previously identified defective ribosomal product of INS. Immunohistochemical analysis revealed that the translation product of this INS-derived splice transcript was detectable in somatostatin-producing delta cells but not in beta cells; this was confirmed by light and electron microscopy. Expression of this alternatively spliced INS product activated preproinsulin-specific CTLs in vitro. The exclusive presence of this alternatively spliced INS product in delta cells may be explained by its clearance from beta cells by insulin-degrading enzyme capturing its insulin B chain fragment and a lack of insulin-degrading enzyme expression in delta cells. CONCLUSIONS/INTERPRETATION: Our data demonstrate that delta cells can express an INS product derived from alternative splicing, containing both the diabetogenic insulin signal peptide and B chain, in their secretory granules. We propose that this alternative INS product may play a role in islet autoimmunity and pathology, as well as endocrine or paracrine function or islet development and endocrine destiny, and transdifferentiation between endocrine cells. INS promoter activity is not confined to beta cells and should be used with care when assigning beta cell identity and selectivity. DATA AVAILABILITY: The full EM dataset is available via www.nanotomy.org (for review: http://www.nanotomy.org/OA/Tienhoven2021SUB/6126-368/ ). Single-cell RNA-seq data was made available by Segerstolpe et al [13] and can be found at https://sandberglab.se/pancreas . The RNA and protein sequence of INS-splice was uploaded to GenBank (BankIt2546444 INS-splice OM489474).


Assuntos
Insulisina , Ilhotas Pancreáticas , Humanos , Células Secretoras de Somatostatina/metabolismo , Insulisina/metabolismo , Insulina/genética , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , RNA , Sinais Direcionadores de Proteínas
8.
J Biol Chem ; 298(7): 102096, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660019

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is involved in the degradation of the low-density lipoprotein receptor. PCSK9 also targets proteins involved in lipid metabolism (very low-density lipoprotein receptor), immunity (major histocompatibility complex I), and viral infection (cluster of differentiation 81). Recent studies have also indicated that PCSK9 loss-of-function mutations are associated with an increased incidence of diabetes; however, the expression and function of PCSK9 in insulin-producing pancreatic beta cells remain unclear. Here, we studied PCSK9 regulation and function by performing loss- and gain-of-function experiments in the human beta cell line EndoC-ßH1. We demonstrate that PCSK9 is expressed and secreted by EndoC-ßH1 cells. We also found that PCSK9 expression is regulated by cholesterol and sterol regulatory element-binding protein transcription factors, as previously demonstrated in other cell types such as hepatocytes. Importantly, we show that PCSK9 knockdown using siRNA results in deregulation of various elements of the transcriptome, proteome, and secretome, and increases insulin secretion. We also observed that PCSK9 decreases low-density lipoprotein receptor and very low-density lipoprotein receptor levels via an extracellular signaling mechanism involving exogenous PCSK9, as well as levels of cluster of differentiation 36, a fatty acid transporter, through an intracellular signaling mechanism. Finally, we found that PCSK9 regulates the cell surface expression of PDL1 and HLA-ABC, proteins involved in cell-lymphocyte interaction, also via an intracellular mechanism. Collectively, these results highlight PCSK9 as a regulator of multiple cell surface receptors in pancreatic beta cells.


Assuntos
Células Secretoras de Insulina , Proteínas de Membrana , Pró-Proteína Convertase 9 , Antígenos CD36/metabolismo , Linhagem Celular , Mutação com Ganho de Função , Humanos , Células Secretoras de Insulina/metabolismo , Lipoproteínas VLDL/metabolismo , Mutação com Perda de Função , Proteínas de Membrana/metabolismo , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo
9.
Cell Mol Life Sci ; 78(6): 2771-2780, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33051777

RESUMO

Heparanase is the predominant enzyme that cleaves heparan sulfate, the main polysaccharide in the extracellular matrix. While the role of heparanase in sustaining the pathology of autoimmune diabetes is well documented, its association with metabolic syndrome/type 2 diabetes attracted less attention. Our research was undertaken to elucidate the significance of heparanase in impaired glucose metabolism in metabolic syndrome and early type 2 diabetes. Here, we report that heparanase exerts opposite effects in insulin-producing (i.e., islets) vs. insulin-target (i.e., skeletal muscle) compartments, sustaining or hampering proper regulation of glucose homeostasis depending on the site of action. We observed that the enzyme promotes macrophage infiltration into islets in a murine model of metabolic syndrome, and fosters ß-cell-damaging properties of macrophages activated in vitro by components of diabetogenic/obese milieu (i.e., fatty acids). On the other hand, in skeletal muscle (prototypic insulin-target tissue), heparanase is essential to ensure insulin sensitivity. Thus, despite a deleterious effect of heparanase on macrophage infiltration in islets, the enzyme appears to have beneficial role in glucose homeostasis in metabolic syndrome. The dichotomic action of the enzyme in the maintenance of glycemic control should be taken into account when considering heparanase-targeting strategies for the treatment of diabetes.


Assuntos
Glucuronidase/metabolismo , Síndrome Metabólica/patologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Ácidos Graxos Insaturados/farmacologia , Teste de Tolerância a Glucose , Glucuronidase/genética , Resistência à Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Curr Diab Rep ; 19(12): 160, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31828551

RESUMO

PURPOSE OF REVIEW: Novel 3D organoid culture techniques have enabled long-term expansion of pancreatic tissue. This review comprehensively summarizes and evaluates the applications of primary tissue-derived pancreatic organoids in regenerative studies, disease modelling, and personalized medicine. RECENT FINDINGS: Organoids derived from human fetal and adult pancreatic tissue have been used to study pancreas development and repair. Generated adult human pancreatic organoids harbor the capacity for clonal expansion and endocrine cell formation. In addition, organoids have been generated from human pancreatic ductal adenocarcinoma in order to study tumor behavior and assess drug responses. Pancreatic organoids constitute an important translational bridge between in vitro and in vivo models, enhancing our understanding of pancreatic cell biology. Current applications for pancreatic organoid technology include studies on tissue regeneration, disease modelling, and drug screening.


Assuntos
Organoides/fisiologia , Pâncreas , Adulto , Animais , Técnicas de Cultura de Células , Feto , Humanos , Modelos Biológicos , Pâncreas/fisiologia , Medicina de Precisão , Medicina Regenerativa
11.
PLoS Genet ; 11(10): e1005583, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26492326

RESUMO

Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA methylation landscape using the 450k array of four human tissues (amnion, muscle, adrenal and pancreas) during the first and second trimester of gestation (9,18 and 22 weeks). We show that a tissue-specific signature, constituted by tissue-specific hypomethylated CpG sites, was already present at 9 weeks of gestation (W9). Furthermore, we report large-scale remodelling of DNA methylation from W9 to W22. Gain of DNA methylation preferentially occurred near genes involved in general developmental processes, whereas loss of DNA methylation mapped to genes with tissue-specific functions. Dynamic DNA methylation was associated with enhancers, but not promoters. Comparison of our data with external fetal adrenal, brain and liver revealed striking similarities in the trajectory of DNA methylation during fetal development. The analysis of gene expression data indicated that dynamic DNA methylation was associated with the progressive repression of developmental programs and the activation of genes involved in tissue-specific processes. The DNA methylation landscape of human fetal development provides insight into regulatory elements that guide tissue specification and lead to organ functionality.


Assuntos
Diferenciação Celular/genética , Metilação de DNA/genética , Epigênese Genética , Desenvolvimento Fetal/genética , Glândulas Suprarrenais/crescimento & desenvolvimento , Glândulas Suprarrenais/metabolismo , Âmnio/crescimento & desenvolvimento , Âmnio/metabolismo , Ilhas de CpG/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano , Humanos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Especificidade de Órgãos/genética , Pâncreas/crescimento & desenvolvimento , Pâncreas/metabolismo , Gravidez , Primeiro Trimestre da Gravidez/genética , Segundo Trimestre da Gravidez/genética , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico
12.
Diabetes Obes Metab ; 19(12): 1810-1813, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28474364

RESUMO

While it is well recognized that obesity is associated with an increased ß-cell mass, the association with α-cell mass is less clear. Type 2 diabetes (T2DM) associated with obesity is a bihormonal disease characterized by inadequate insulin secretion and hyperglucagonaemia. We examined ß- and α-cell mass throughout the pancreas in obese and lean subjects. Pancreatic tissue of the head, body and tail region of the pancreas was examined from 15 obese subjects (body mass index [BMI] ≥ 27 kg/m2 ) and 15 age-matched lean subjects (BMI ≤ 25 kg/m2 ) without diabetes. In obese subjects both ß- and α-cell mass were proportionally higher compared with lean subjects, thereby maintaining the α- to ß-cell ratio. The adaptation to obesity occurred preferentially in the head of the pancreas. As data so far have been derived from histological studies of ß- and α-cell adaptation, in which the head region of the human pancreas was not included, the adaptive capacity of humans to obesity has previously been underestimated. Obesity is associated with an increased α-cell mass, which could contribute to the hyperglucagonaemia observed in people with T2DM.


Assuntos
Células Secretoras de Glucagon/patologia , Obesidade/patologia , Índice de Massa Corporal , Contagem de Células , Proliferação de Células , Tamanho Celular , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Antígeno Ki-67/metabolismo , Pessoa de Meia-Idade , Obesidade/metabolismo , Tamanho do Órgão , Reprodutibilidade dos Testes , Doadores de Tecidos
13.
J Cell Mol Med ; 19(8): 1836-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25782016

RESUMO

Clinical islet transplantation is a promising treatment for patients with type 1 diabetes. However, pancreatic islets vary in size and shape affecting their survival and function after transplantation because of mass transport limitations. To reduce diffusion restrictions and improve islet cell survival, the generation of islets with optimal dimensions by dispersion followed by reassembly of islet cells, can help limit the length of diffusion pathways. This study describes a microwell platform that supports the controlled and reproducible production of three-dimensional pancreatic cell clusters of human donor islets. We observed that primary human islet cell aggregates with a diameter of 100-150 µm consisting of about 1000 cells best resembled intact pancreatic islets as they showed low apoptotic cell death (<2%), comparable glucose-responsiveness and increasing PDX1, MAFA and INSULIN gene expression with increasing aggregate size. The re-associated human islet cells showed an a-typical core shell configuration with beta cells predominantly on the outside unlike human islets, which became more randomized after implantation similar to native human islets. After transplantation of these islet cell aggregates under the kidney capsule of immunodeficient mice, human C-peptide was detected in the serum indicating that beta cells retained their endocrine function similar to human islets. The agarose microwell platform was shown to be an easy and very reproducible method to aggregate pancreatic islet cells with high accuracy providing a reliable tool to study cell-cell interactions between insuloma and/or primary islet cells.


Assuntos
Glucose/farmacologia , Ilhotas Pancreáticas/citologia , Animais , Agregação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Tamanho Celular , Sobrevivência Celular , Células Cultivadas , Feminino , Humanos , Insulinoma/patologia , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
15.
Am J Physiol Endocrinol Metab ; 306(5): E552-8, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24398402

RESUMO

High-fat, low-carbohydrate ketogenic diets (KD) are used for weight loss and for treatment of refractory epilepsy. Recently, short-time studies in rodents have shown that, besides their beneficial effect on body weight, KD lead to glucose intolerance and insulin resistance. However, the long-term effects on pancreatic endocrine cells are unknown. In this study we investigate the effects of long-term KD on glucose tolerance and ß- and α-cell mass in mice. Despite an initial weight loss, KD did not result in weight loss after 22 wk. Plasma markers associated with dyslipidemia and inflammation (cholesterol, triglycerides, leptin, monocyte chemotactic protein-1, IL-1ß, and IL-6) were increased, and KD-fed mice showed signs of hepatic steatosis after 22 wk of diet. Long-term KD resulted in glucose intolerance that was associated with insufficient insulin secretion from ß-cells. After 22 wk, insulin-stimulated glucose uptake was reduced. A reduction in ß-cell mass was observed in KD-fed mice together with an increased number of smaller islets. Also α-cell mass was markedly decreased, resulting in a lower α- to ß-cell ratio. Our data show that long-term KD causes dyslipidemia, a proinflammatory state, signs of hepatic steatosis, glucose intolerance, and a reduction in ß- and α-cell mass, but no weight loss. This indicates that long-term high-fat, low-carbohydrate KD lead to features that are also associated with the metabolic syndrome and an increased risk for type 2 diabetes in humans.


Assuntos
Dieta Cetogênica/efeitos adversos , Células Secretoras de Glucagon/patologia , Intolerância à Glucose/etiologia , Células Secretoras de Insulina/patologia , Redução de Peso , Animais , Biomarcadores/sangue , Quimiocina CCL2/sangue , Dieta com Restrição de Carboidratos/efeitos adversos , Células Secretoras de Glucagon/metabolismo , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Inflamação/sangue , Insulina/sangue , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/sangue , Interleucina-6/sangue , Camundongos , Triglicerídeos/sangue
16.
Mol Ther ; 21(8): 1592-601, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23689598

RESUMO

Islet transplantation is a promising therapy for type 1 diabetes, but graft function and survival are compromised by recurrent islet autoimmunity. Immunoprotection of islets will be required to improve clinical outcome. We engineered human ß cells to express herpesvirus-encoded immune-evasion proteins, "immunevasins." The capacity of immunevasins to protect ß cells from autoreactive T-cell killing was evaluated in vitro and in vivo in humanized mice. Lentiviral vectors were used for efficient genetic modification of primary human ß cells without impairing their function. Using a novel ß-cell-specific reporter gene assay, we show that autoreactive cytotoxic CD8(+) T-cell clones isolated from patients with recent onset diabetes selectively destroyed human ß cells, and that coexpression of the human cytomegalovirus-encoded US2 protein and serine proteinase inhibitor 9 offers highly efficient protection in vitro. Moreover, coimplantation of these genetically modified pseudoislets with ß-cell-specific cytotoxic T cells into immunodeficient mice achieves preserved human insulin production and C-peptide secretion. Collectively, our data provide proof of concept that human ß cells can be efficiently genetically modified to provide protection from killing mediated by autoreactive T cells and retain their function in vitro and in vivo.


Assuntos
Autoimunidade , Linfócitos T CD8-Positivos/imunologia , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Animais , Peptídeo C/metabolismo , Citotoxicidade Imunológica , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Antígeno HLA-A2/imunologia , Humanos , Insulina/genética , Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Lentivirus/genética , Masculino , Camundongos , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , Precursores de Proteínas/imunologia , Serpinas/genética , Serpinas/imunologia , Linfócitos T Citotóxicos , Transdução Genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
17.
Front Immunol ; 15: 1381319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742118

RESUMO

Introduction: Inflammation of the pancreas contributes to the development of diabetes mellitus. Although it is well-accepted that local inflammation leads to a progressive loss of functional beta cell mass that eventually causes the onset of the disease, the development of islet inflammation remains unclear. Methods: Here, we used single-cell RNA sequencing to explore the cell type-specific molecular response of primary human pancreatic cells exposed to an inflammatory environment. Results: We identified a duct subpopulation presenting a unique proinflammatory signature among all pancreatic cell types. Discussion: Overall, the findings of this study point towards a role for duct cells in the propagation of islet inflammation, and in immune cell recruitment and activation, which are key steps in the pathophysiology of diabetes mellitus.


Assuntos
Inflamação , Ductos Pancreáticos , Análise de Célula Única , Transcriptoma , Humanos , Ductos Pancreáticos/patologia , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/imunologia , Inflamação/imunologia , Inflamação/genética , Perfilação da Expressão Gênica , Diabetes Mellitus/imunologia , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Células Cultivadas , Mediadores da Inflamação/metabolismo
18.
Mol Metab ; 76: 101772, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442376

RESUMO

OBJECTIVES: Readily accessible human pancreatic beta cells that are functionally close to primary adult beta cells are a crucial model to better understand human beta cell physiology and develop new treatments for diabetes. We here report the characterization of EndoC-ßH5 cells, the latest in the EndoC-ßH cell family. METHODS: EndoC-ßH5 cells were generated by integrative gene transfer of immortalizing transgenes hTERT and SV40 large T along with Herpes Simplex Virus-1 thymidine kinase into human fetal pancreas. Immortalizing transgenes were removed after amplification using CRE activation and remaining non-excized cells eliminated using ganciclovir. Resulting cells were distributed as ready to use EndoC-ßH5 cells. We performed transcriptome, immunological and extensive functional assays. RESULTS: Ready to use EndoC-ßH5 cells display highly efficient glucose dependent insulin secretion. A robust 10-fold insulin secretion index was observed and reproduced in four independent laboratories across Europe. EndoC-ßH5 cells secrete insulin in a dynamic manner in response to glucose and secretion is further potentiated by GIP and GLP-1 analogs. RNA-seq confirmed abundant expression of beta cell transcription factors and functional markers, including incretin receptors. Cytokines induce a gene expression signature of inflammatory pathways and antigen processing and presentation. Finally, modified HLA-A2 expressing EndoC-ßH5 cells elicit specific A2-alloreactive CD8 T cell activation. CONCLUSIONS: EndoC-ßH5 cells represent a unique storable and ready to use human pancreatic beta cell model with highly robust and reproducible features. Such cells are thus relevant for the study of beta cell function, screening and validation of new drugs, and development of disease models.


Assuntos
Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Secreção de Insulina , Linhagem Celular , Insulina/metabolismo , Fatores de Transcrição/metabolismo , Glucose/metabolismo
19.
Cell Mol Life Sci ; 68(12): 2141-56, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20972814

RESUMO

In the past, clinical trials transplanting bone marrow-derived mononuclear cells reported a limited improvement in cardiac function. Therefore, the search for stem cells leading to more successful stem cell therapies continues. Good candidates are the so-called cardiac stem cells (CSCs). To date, there is no clear evidence to show if these cells are intrinsic stem cells from the heart or mobilized cells from bone marrow. In this study we performed a comparative study between human mesenchymal stem cells (hMSCs), purified c-kit(+) CSCs, and cardiosphere-derived cells (CDCs). Our results showed that hMSCs can be discriminated from CSCs by their differentiation capacity towards adipocytes and osteocytes and the expression of CD140b. On the other hand, cardiac progenitors display a greater cardiomyogenic differentiation capacity. Despite a different isolation protocol, no distinction could be made between c-kit(+) CSCs and CDCs, indicating that they probably derive from the same precursor or even are the same cells.


Assuntos
Células-Tronco Mesenquimais/citologia , Mioblastos Cardíacos/citologia , Regeneração , Diferenciação Celular , Linhagem da Célula , Separação Celular/métodos , Células Cultivadas , Coração/fisiologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Mioblastos Cardíacos/fisiologia
20.
Front Endocrinol (Lausanne) ; 13: 991632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36171907

RESUMO

Beta-cell destruction in type 1 diabetes (T1D) results from the combined effect of inflammation and recurrent autoimmunity. Accumulating evidence suggests the engagement of cellular stress during the initial stage of the disease, preceding destruction and triggering immune cell infiltration. While the role of the endoplasmic reticulum (ER) in this process has been largely described, the participation of the other cellular organelles, particularly the mitochondria which are central mediator for beta-cell survival and function, remains poorly investigated. Here, we have explored the contribution of ER stress, in activating type-I interferon signaling and innate immune cell recruitment. Using human beta-cell line EndoC-ßH1 exposed to thapsigargin, we demonstrate that induction of cellular stress correlates with mitochondria dysfunction and a significant accumulation of cytosolic mitochondrial DNA (mtDNA) that triggers neutrophils migration by an IL8-dependent mechanism. These results provide a novel mechanistic insight on how ER stress can cause insulitis and may ultimately facilitate the identification of potential targets to protect beta-cells against immune infiltration.


Assuntos
DNA Mitocondrial , Estresse do Retículo Endoplasmático , Células Secretoras de Insulina , Interferons , Interleucina-8 , Quimiotaxia , DNA Mitocondrial/genética , Humanos , Mitocôndrias , Neutrófilos , Tapsigargina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA