Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135881

RESUMO

Observational studies reveal substantial variability in microbiome composition across individuals. Targeted studies in gnotobiotic animals underscore this variability by showing that some bacterial strains colonize deterministically, while others colonize stochastically. While some of this variability can be explained by external factors like environmental, dietary, and genetic differences between individuals, in this paper we show that for the model organism Drosophila melanogaster, interactions between bacteria can affect the microbiome assembly process, contributing to a baseline level of microbiome variability even among isogenic organisms that are identically reared, housed, and fed. In germ-free flies fed known combinations of bacterial species, we find that some species colonize more frequently than others even when fed at the same high concentration. We develop an ecological technique that infers the presence of interactions between bacterial species based on their colonization odds in different contexts, requiring only presence/absence data from two-species experiments. We use a progressive sequence of probabilistic models, in which the colonization of each bacterial species is treated as an independent stochastic process, to reproduce the empirical distributions of colonization outcomes across experiments. We find that incorporating context-dependent interactions substantially improves the performance of the models. Stochastic, context-dependent microbiome assembly underlies clinical therapies like fecal microbiota transplantation and probiotic administration and should inform the design of synthetic fecal transplants and dosing regimes.


Assuntos
Bactérias/classificação , Drosophila melanogaster/microbiologia , Microbiota , Animais , Fenômenos Fisiológicos Bacterianos/genética , Modelos Biológicos , Especificidade da Espécie , Processos Estocásticos
2.
Magn Reson Med ; 86(1): 308-319, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33608954

RESUMO

PURPOSE: Provide a direct, non-invasive diagnostic measure of microscopic tissue texture in the size scale between tens of microns and the much larger scale measurable by clinical imaging. This paper presents a method and data demonstrating the ability to measure these microscopic pathologic tissue textures (histology) in the presence of subject motion in an MR scanner. This size range is vital to diagnosing a wide range of diseases. THEORY/METHODS: MR micro-Texture (MRµT) resolves these textures by a combination of measuring a targeted set of k-values to characterize texture-as in diffraction analysis of materials, performing a selective internal excitation to isolate a volume of interest (VOI), applying a high k-value phase encode to the excited spins in the VOI, and acquiring each individual k-value data point in a single excitation-providing motion immunity and extended acquisition time for maximizing signal-to-noise ratio. Additional k-value measurements from the same tissue can be made to characterize the tissue texture in the VOI-there is no need for these additional measurements to be spatially coherent as there is no image to be reconstructed. This method was applied to phantoms and tissue specimens including human prostate tissue. RESULTS: Data demonstrating resolution <50 µm, motion immunity, and clearly differentiating between normal and cancerous tissue textures are presented. CONCLUSION: The data reveal textural differences not resolvable by standard MR imaging. As MRµT is a pulse sequence, it is directly translatable to MRI scanners currently in clinical practice to meet the need for further improvement in cancer imaging.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Masculino , Movimento (Física) , Imagens de Fantasmas , Razão Sinal-Ruído
3.
Proc Natl Acad Sci U S A ; 115(51): E11951-E11960, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30510004

RESUMO

Gut bacteria can affect key aspects of host fitness, such as development, fecundity, and lifespan, while the host, in turn, shapes the gut microbiome. However, it is unclear to what extent individual species versus community interactions within the microbiome are linked to host fitness. Here, we combinatorially dissect the natural microbiome of Drosophila melanogaster and reveal that interactions between bacteria shape host fitness through life history tradeoffs. Empirically, we made germ-free flies colonized with each possible combination of the five core species of fly gut bacteria. We measured the resulting bacterial community abundances and fly fitness traits, including development, reproduction, and lifespan. The fly gut promoted bacterial diversity, which, in turn, accelerated development, reproduction, and aging: Flies that reproduced more died sooner. From these measurements, we calculated the impact of bacterial interactions on fly fitness by adapting the mathematics of genetic epistasis to the microbiome. Development and fecundity converged with higher diversity, suggesting minimal dependence on interactions. However, host lifespan and microbiome abundances were highly dependent on interactions between bacterial species. Higher-order interactions (involving three, four, and five species) occurred in 13-44% of possible cases depending on the trait, with the same interactions affecting multiple traits, a reflection of the life history tradeoff. Overall, we found these interactions were frequently context-dependent and often had the same magnitude as individual species themselves, indicating that the interactions can be as important as the individual species in gut microbiomes.


Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Interações Microbianas/fisiologia , Microbiota/fisiologia , Animais , Bactérias/isolamento & purificação , Biodiversidade , Drosophila melanogaster , Epistasia Genética , Fertilidade , Microbioma Gastrointestinal/genética , Vida Livre de Germes , Interações entre Hospedeiro e Microrganismos/genética , Longevidade , Interações Microbianas/genética , Microbiota/genética , Fenótipo , Reprodução
4.
PLoS Comput Biol ; 15(6): e1007105, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31242178

RESUMO

Mathematical modeling of behavioral sequences yields insight into the rules and mechanisms underlying sequence generation. Grooming in Drosophila melanogaster is characterized by repeated execution of distinct, stereotyped actions in variable order. Experiments demonstrate that, following stimulation by an irritant, grooming progresses gradually from an early phase dominated by anterior cleaning to a later phase with increased walking and posterior cleaning. We also observe that, at an intermediate temporal scale, there is a strong relationship between the amount of time spent performing body-directed grooming actions and leg-directed actions. We then develop a series of data-driven Markov models that isolate and identify the behavioral features governing transitions between individual grooming bouts. We identify action order as the primary driver of probabilistic, but non-random, syntax structure, as has previously been identified. Subsequent models incorporate grooming bout duration, which also contributes significantly to sequence structure. Our results show that, surprisingly, the syntactic rules underlying probabilistic grooming transitions possess action duration-dependent structure, suggesting that sensory input-independent mechanisms guide grooming behavior at short time scales. Finally, the inclusion of a simple rule that modifies grooming transition probabilities over time yields a generative model that recapitulates the key features of observed grooming sequences at several time scales. These discoveries suggest that sensory input guides action selection by modulating internally generated dynamics. Additionally, the discovery of these principles governing grooming in D. melanogaster demonstrates the utility of incorporating temporal information when characterizing the syntax of behavioral sequences.


Assuntos
Drosophila melanogaster/fisiologia , Asseio Animal/fisiologia , Modelos Biológicos , Animais , Biologia Computacional , Fatores de Tempo
5.
PLoS Comput Biol ; 14(2): e1006001, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29451873

RESUMO

In this paper we study antibiotic-induced C. difficile infection (CDI), caused by the toxin-producing C. difficile (CD), and implement clinically-inspired simulated treatments in a computational framework that synthesizes a generalized Lotka-Volterra (gLV) model with SIR modeling techniques. The gLV model uses parameters derived from an experimental mouse model, in which the mice are administered antibiotics and subsequently dosed with CD. We numerically identify which of the experimentally measured initial conditions are vulnerable to CD colonization, then formalize the notion of CD susceptibility analytically. We simulate fecal transplantation, a clinically successful treatment for CDI, and discover that both the transplant timing and transplant donor are relevant to the the efficacy of the treatment, a result which has clinical implications. We incorporate two nongeneric yet dangerous attributes of CD into the gLV model, sporulation and antibiotic-resistant mutation, and for each identify relevant SIR techniques that describe the desired attribute. Finally, we rely on the results of our framework to analyze an experimental study of fecal transplants in mice, and are able to explain observed experimental results, validate our simulated results, and suggest model-motivated experiments.


Assuntos
Antibacterianos/uso terapêutico , Clostridioides difficile , Infecções por Clostridium/fisiopatologia , Adaptação Biológica , Animais , Simulação por Computador , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Fezes , Microbioma Gastrointestinal , Humanos , Camundongos , Modelos Teóricos , Mutação , Esporos Bacterianos
6.
Neuroimage ; 146: 741-762, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27596025

RESUMO

As humans age, cognition and behavior change significantly, along with associated brain function and organization. Aging has been shown to decrease variability in functional magnetic resonance imaging (fMRI) signals, and to affect the modular organization of human brain function. In this work, we use complex network analysis to investigate the dynamic community structure of large-scale brain function, asking how evolving communities interact with known brain systems, and how the dynamics of communities and brain systems are affected by age. We analyze dynamic networks derived from fMRI scans of 104 human subjects performing a word memory task, and determine the time-evolving modular structure of these networks by maximizing the multislice modularity, thereby identifying distinct communities, or sets of brain regions with strong intra-set functional coherence. To understand how community structure changes over time, we examine the number of communities as well as the flexibility, or the likelihood that brain regions will switch between communities. We find a significant positive correlation between age and both these measures: younger subjects tend to have less fragmented and more coherent communities, and their brain regions tend to change communities less often during the memory task. We characterize the relationship of community structure to known brain systems by the recruitment coefficient, or the probability of a brain region being grouped in the same community as other regions in the same system. We find that regions associated with cingulo-opercular, somatosensory, ventral attention, and subcortical circuits have a significantly higher recruitment coefficient in younger subjects. This indicates that the within-system functional coherence of these specific systems during the memory task declines with age. Such a correspondence does not exist for other systems (e.g. visual and default mode), whose recruitment coefficients remain relatively uniform across ages. These results confirm that the dynamics of functional community structure vary with age, and demonstrate methods for investigating how aging differentially impacts the functional organization of different brain systems.


Assuntos
Envelhecimento , Encéfalo/fisiologia , Reconhecimento Psicológico/fisiologia , Adolescente , Adulto , Idoso , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Vias Neurais/fisiologia
7.
PLoS Comput Biol ; 12(11): e1005178, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27880785

RESUMO

Individual differences in brain functional networks may be related to complex personal identifiers, including health, age, and ability. Dynamic network theory has been used to identify properties of dynamic brain function from fMRI data, but the majority of analyses and findings remain at the level of the group. Here, we apply hypergraph analysis, a method from dynamic network theory, to quantify individual differences in brain functional dynamics. Using a summary metric derived from the hypergraph formalism-hypergraph cardinality-we investigate individual variations in two separate, complementary data sets. The first data set ("multi-task") consists of 77 individuals engaging in four consecutive cognitive tasks. We observe that hypergraph cardinality exhibits variation across individuals while remaining consistent within individuals between tasks; moreover, the analysis of one of the memory tasks revealed a marginally significant correspondence between hypergraph cardinality and age. This finding motivated a similar analysis of the second data set ("age-memory"), in which 95 individuals, aged 18-75, performed a memory task with a similar structure to the multi-task memory task. With the increased age range in the age-memory data set, the correlation between hypergraph cardinality and age correspondence becomes significant. We discuss these results in the context of the well-known finding linking age with network structure, and suggest that hypergraph analysis should serve as a useful tool in furthering our understanding of the dynamic network structure of the brain.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Conectoma/métodos , Longevidade/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Adaptação Fisiológica/fisiologia , Adolescente , Adulto , Idoso , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
8.
PLoS Comput Biol ; 11(1): e1004029, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569227

RESUMO

Activity in the human brain moves between diverse functional states to meet the demands of our dynamic environment, but fundamental principles guiding these transitions remain poorly understood. Here, we capitalize on recent advances in network science to analyze patterns of functional interactions between brain regions. We use dynamic network representations to probe the landscape of brain reconfigurations that accompany task performance both within and between four cognitive states: a task-free resting state, an attention-demanding state, and two memory-demanding states. Using the formalism of hypergraphs, we identify the presence of groups of functional interactions that fluctuate coherently in strength over time both within (task-specific) and across (task-general) brain states. In contrast to prior emphases on the complexity of many dyadic (region-to-region) relationships, these results demonstrate that brain adaptability can be described by common processes that drive the dynamic integration of cognitive systems. Moreover, our results establish the hypergraph as an effective measure for understanding functional brain dynamics, which may also prove useful in examining cross-task, cross-age, and cross-cohort functional change.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Adulto , Humanos , Imageamento por Ressonância Magnética , Análise e Desempenho de Tarefas
9.
Proc Natl Acad Sci U S A ; 110(15): 6169-74, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530246

RESUMO

Magnetic resonance imaging enables the noninvasive mapping of both anatomical white matter connectivity and dynamic patterns of neural activity in the human brain. We examine the relationship between the structural properties of white matter streamlines (structural connectivity) and the functional properties of correlations in neural activity (functional connectivity) within 84 healthy human subjects both at rest and during the performance of attention- and memory-demanding tasks. We show that structural properties, including the length, number, and spatial location of white matter streamlines, are indicative of and can be inferred from the strength of resting-state and task-based functional correlations between brain regions. These results, which are both representative of the entire set of subjects and consistently observed within individual subjects, uncover robust links between structural and functional connectivity in the human brain.


Assuntos
Atenção , Mapeamento Encefálico , Encéfalo/fisiologia , Memória , Envelhecimento , Cognição , Biologia Computacional , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética , Modelos Estatísticos , Vias Neurais , Software
10.
PLoS Comput Biol ; 10(3): e1003491, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24675546

RESUMO

Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling--in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity) do not in general simultaneously display a second (e.g., hierarchy). This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data.


Assuntos
Encéfalo/fisiologia , Algoritmos , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Análise por Conglomerados , Biologia Computacional , Fractais , Voluntários Saudáveis , Humanos , Modelos Neurológicos , Modelos Estatísticos , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Probabilidade , Software
11.
PLoS Comput Biol ; 10(10): e1003712, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25275860

RESUMO

Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Modelos Neurológicos , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Adulto , Biologia Computacional , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/patologia
12.
PLoS Comput Biol ; 10(5): e1003591, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24830758

RESUMO

The anatomical connectivity of the human brain supports diverse patterns of correlated neural activity that are thought to underlie cognitive function. In a manner sensitive to underlying structural brain architecture, we examine the extent to which such patterns of correlated activity systematically vary across cognitive states. Anatomical white matter connectivity is compared with functional correlations in neural activity measured via blood oxygen level dependent (BOLD) signals. Functional connectivity is separately measured at rest, during an attention task, and during a memory task. We assess these structural and functional measures within previously-identified resting-state functional networks, denoted task-positive and task-negative networks, that have been independently shown to be strongly anticorrelated at rest but also involve regions of the brain that routinely increase and decrease in activity during task-driven processes. We find that the density of anatomical connections within and between task-positive and task-negative networks is differentially related to strong, task-dependent correlations in neural activity. The space mapped out by the observed structure-function relationships is used to define a quantitative measure of separation between resting, attention, and memory states. We find that the degree of separation between states is related to both general measures of behavioral performance and relative differences in task-specific measures of attention versus memory performance. These findings suggest that the observed separation between cognitive states reflects underlying organizational principles of human brain structure and function.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Cognição/fisiologia , Modelos Anatômicos , Modelos Neurológicos , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Atenção/fisiologia , Simulação por Computador , Conectoma/métodos , Humanos , Memória/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/fisiologia
13.
Proc Natl Acad Sci U S A ; 108(18): 7641-6, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21502525

RESUMO

Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.


Assuntos
Adaptação Fisiológica/fisiologia , Encéfalo/fisiologia , Aprendizagem/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Encéfalo/anatomia & histologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/anatomia & histologia
14.
Phys Biol ; 10(2): 025002, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23492792

RESUMO

Using a dynamic model we study the adaptive immune response to a sequence of two infections. We incorporate lymphocyte diversity by modeling populations as continuous distributions in a multi-dimensional space. As expected, memory cells generated by the primary infection invoke a rapid response when the secondary infection is identical (homologous). When the secondary infection is different (heterologous), the memory cells have a positive effect or no effect at all depending on the similarity of the infections. This model displays 'original antigenic sin' where the average effector affinity for the heterologous infection is lower than it would be for a naive response, but in cases with original antigenic sin we see a reduction in pathogen density. We model pathology resulting from the immune system itself (immunopathology) but find that in cases of original antigenic sin, immunopathology is still reduced. Average effector affinity is not an accurate measure of the quality of an immune response. The effectivity, which is the total pathogen killing rate, provides a direct measure of quality. This quantity takes both affinity and magnitude into account.


Assuntos
Imunidade Adaptativa , Linfócitos T CD8-Positivos/imunologia , Simulação por Computador , Imunidade Celular , Modelos Imunológicos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/patologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/patologia
15.
Chaos ; 23(1): 013142, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23556979

RESUMO

We describe techniques for the robust detection of community structure in some classes of time-dependent networks. Specifically, we consider the use of statistical null models for facilitating the principled identification of structural modules in semi-decomposable systems. Null models play an important role both in the optimization of quality functions such as modularity and in the subsequent assessment of the statistical validity of identified community structure. We examine the sensitivity of such methods to model parameters and show how comparisons to null models can help identify system scales. By considering a large number of optimizations, we quantify the variance of network diagnostics over optimizations ("optimization variance") and over randomizations of network structure ("randomization variance"). Because the modularity quality function typically has a large number of nearly degenerate local optima for networks constructed using real data, we develop a method to construct representative partitions that uses a null model to correct for statistical noise in sets of partitions. To illustrate our results, we employ ensembles of time-dependent networks extracted from both nonlinear oscillators and empirical neuroscience data.


Assuntos
Modelos Neurológicos , Modelos Estatísticos , Rede Nervosa/fisiologia , Dinâmica não Linear , Rede Social , Teoria de Sistemas , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Atividade Motora , Rede Nervosa/citologia , Oscilometria , Comportamento Social , Fatores de Tempo
16.
Nat Commun ; 14(1): 1557, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944617

RESUMO

The gut is continuously invaded by diverse bacteria from the diet and the environment, yet microbiome composition is relatively stable over time for host species ranging from mammals to insects, suggesting host-specific factors may selectively maintain key species of bacteria. To investigate host specificity, we used gnotobiotic Drosophila, microbial pulse-chase protocols, and microscopy to investigate the stability of different strains of bacteria in the fly gut. We show that a host-constructed physical niche in the foregut selectively binds bacteria with strain-level specificity, stabilizing their colonization. Primary colonizers saturate the niche and exclude secondary colonizers of the same strain, but initial colonization by Lactobacillus species physically remodels the niche through production of a glycan-rich secretion to favor secondary colonization by unrelated commensals in the Acetobacter genus. Our results provide a mechanistic framework for understanding the establishment and stability of a multi-species intestinal microbiome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Drosophila melanogaster/microbiologia , Trato Gastrointestinal/microbiologia , Bactérias , Drosophila , Mamíferos
17.
PLoS Comput Biol ; 7(6): e1002063, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21738455

RESUMO

The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.


Assuntos
Aprendizagem , Memória , Modelos Neurológicos , Rede Nervosa , Redes Neurais de Computação , Biologia Computacional , Humanos
18.
Neuroimage ; 54(2): 1262-79, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20850551

RESUMO

Whole-brain network analysis of diffusion imaging tractography data is an important new tool for quantification of differential connectivity patterns across individuals and between groups. Here we investigate both the conservation of network architectural properties across methodological variation and the reproducibility of individual architecture across multiple scanning sessions. Diffusion spectrum imaging (DSI) and diffusion tensor imaging (DTI) data were both acquired in triplicate from a cohort of healthy young adults. Deterministic tractography was performed on each dataset and inter-regional connectivity matrices were then derived by applying each of three widely used whole-brain parcellation schemes over a range of spatial resolutions. Across acquisitions and preprocessing streams, anatomical brain networks were found to be sparsely connected, hierarchical, and assortative. They also displayed signatures of topo-physical interdependence such as Rentian scaling. Basic connectivity properties and several graph metrics consistently displayed high reproducibility and low variability in both DSI and DTI networks. The relative increased sensitivity of DSI to complex fiber configurations was evident in increased tract counts and network density compared with DTI. In combination, this pattern of results shows that network analysis of human white matter connectivity provides sensitive and temporally stable topological and physical estimates of individual cortical structure across multiple spatial scales.


Assuntos
Mapeamento Encefálico , Encéfalo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Vias Neurais/anatomia & histologia , Imagem de Difusão por Ressonância Magnética , Humanos , Adulto Jovem
19.
Front Behav Neurosci ; 15: 769372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087385

RESUMO

Behavioral differences can be observed between species or populations (variation) or between individuals in a genetically similar population (variability). Here, we investigate genetic differences as a possible source of variation and variability in Drosophila grooming. Grooming confers survival and social benefits. Grooming features of five Drosophila species exposed to a dust irritant were analyzed. Aspects of grooming behavior, such as anterior to posterior progression, were conserved between and within species. However, significant differences in activity levels, proportion of time spent in different cleaning movements, and grooming syntax were identified between species. All species tested showed individual variability in the order and duration of action sequences. Genetic diversity was not found to correlate with grooming variability within a species: melanogaster flies bred to increase or decrease genetic heterogeneity exhibited similar variability in grooming syntax. Individual flies observed on consecutive days also showed grooming sequence variability. Standardization of sensory input using optogenetics reduced but did not eliminate this variability. In aggregate, these data suggest that sequence variability may be a conserved feature of grooming behavior itself. These results also demonstrate that large genetic differences result in distinguishable grooming phenotypes (variation), but that genetic heterogeneity within a population does not necessarily correspond to an increase in the range of grooming behavior (variability).

20.
Netw Neurosci ; 5(1): 125-144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33688609

RESUMO

Sex steroid hormones have been shown to alter regional brain activity, but the extent to which they modulate connectivity within and between large-scale functional brain networks over time has yet to be characterized. Here, we applied dynamic community detection techniques to data from a highly sampled female with 30 consecutive days of brain imaging and venipuncture measurements to characterize changes in resting-state community structure across the menstrual cycle. Four stable functional communities were identified, consisting of nodes from visual, default mode, frontal control, and somatomotor networks. Limbic, subcortical, and attention networks exhibited higher than expected levels of nodal flexibility, a hallmark of between-network integration and transient functional reorganization. The most striking reorganization occurred in a default mode subnetwork localized to regions of the prefrontal cortex, coincident with peaks in serum levels of estradiol, luteinizing hormone, and follicle stimulating hormone. Nodes from these regions exhibited strong intranetwork increases in functional connectivity, leading to a split in the stable default mode core community and the transient formation of a new functional community. Probing the spatiotemporal basis of human brain-hormone interactions with dynamic community detection suggests that hormonal changes during the menstrual cycle result in temporary, localized patterns of brain network reorganization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA