Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biol Proced Online ; 26(1): 17, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890570

RESUMO

BACKGROUND: Culex pipiens L. is a principal vector of zoonotic arboviruses in Europe, acting in both an amplification role in enzootic transmission between avian hosts and as a bridge vector between avian hosts and mammals. The species consists of two forms which are indistinguishable using morphological methods but possess varying ecological and physiological traits that influence their vector capacity. In this study we validate methods that can be used to extract trace DNA from single pupal exuviae of Cx. pipiens for use in molecular speciation of samples. These DNA extraction methods are compared using measurement of the total yield and successful identification using a real-time polymerase chain reaction (PCR) assay. RESULTS: Genomic DNA was initially extracted from colony-derived individuals using an ethanol precipitation method, two commercially available DNA extraction kits: DNeasy® Blood & Tissue Kit (Qiagen, UK) and Wizard® SV Genomic DNA Purification System (Promega, UK) and a direct real-time PCR method. Time elapsed between eclosion and processing of pupae significantly influenced Cx. pipiens form identification as nucleic acid concentration and PCR amplification success decreased with increased time elapsed. Real-time PCR amplification success, however, was not shown to vary significantly between the three extraction methods, with all methods successfully identifying all samples, but the direct real-time PCR method achieved a lesser amplification success rate of 70% (n = 20 for each treatment). More variable results were produced when field-derived exuviae were used, with no significant difference in real-time PCR amplification success found across the four methods and a lower overall rate of successful identification of 55-80%. CONCLUSIONS: This study shows that both colony and field derived Cx. pipiens pupal exuviae can be a useful non-invasive source of trace DNA permitting accurate biotype differentiation for at least twenty-four hours post-eclosion. The significance and utility of this technique in ecological and behavioural studies of Cx. pipiens is discussed and recommendations made for use according to experimental scenario.

2.
Biol Proced Online ; 25(1): 27, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932658

RESUMO

BACKGROUND: Arthropods transmit a wide range of pathogens of importance for the global health of humans, animals, and plants. One group of these arthropod vectors, Culicoides biting midges (Diptera: Ceratopogonidae), is the biological vector of several human and animal pathogens, including economically important livestock viruses like bluetongue virus (BTV). Like other arthropod-borne viruses (arboviruses), Culicoides-borne viruses must reach and replicate in the salivary apparatus, from where they can be transmitted to susceptible hosts through the saliva during subsequent blood feeding. Despite the importance of the salivary gland apparatus for pathogen transmission to susceptible animals from the bite of infected Culicoides, these structures have received relatively little attention, perhaps due to the small size and fragility of these vectors. RESULTS: In this study, we developed techniques to visualize the infection of the salivary glands and other soft tissues with BTV, in some of the smallest known arbovirus vectors, Culicoides biting midges, using three-dimensional immunofluorescence confocal microscopy. We showed BTV infection of specific structures of the salivary gland apparatus of female Culicoides vectors following oral virus uptake, related visualisation of viral infection in the salivary apparatus to high viral RNA copies in the body, and demonstrated for the first time, that the accessory glands are a primary site for BTV replication within the salivary apparatus. CONCLUSIONS: Our work has revealed a novel site of virus-vector interactions, and a novel role of the accessory glands of Culicoides in arbovirus amplification and transmission. Our approach would also be applicable to a wide range of arbovirus vector groups including sand flies (Diptera: Psychodidae), as well as provide a powerful tool to investigate arbovirus infection and dissemination, particularly where there are practical challenges in the visualization of small size and delicate tissues of arthropods.

3.
J Virol ; 96(13): e0053122, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35727032

RESUMO

Segmented RNA viruses are a taxonomically diverse group that can infect plant, wildlife, livestock and human hosts. A shared feature of these viruses is the ability to exchange genome segments during coinfection of a host by a process termed "reassortment." Reassortment enables rapid evolutionary change, but where transmission involves a biological arthropod vector, this change is constrained by the selection pressures imposed by the requirement for replication in two evolutionarily distant hosts. In this study, we use an in vivo, host-arbovirus-vector model to investigate the impact of reassortment on two phenotypic traits, virus infection rate in the vector and virulence in the host. Bluetongue virus (BTV) (Reoviridae) is the causative agent of bluetongue (BT), an economically important disease of domestic and wild ruminants and deer. The genome of BTV comprises 10 linear segments of dsRNA, and the virus is transmitted between ruminants by Culicoides biting midges (Diptera: Ceratopogonidae). Five strains of BTV representing three serotypes (BTV-1, BTV-4, and BTV-8) were isolated from naturally infected ruminants in Europe and ancestral/reassortant lineage status assigned through full genome sequencing. Each strain was then assessed in parallel for the ability to replicate in vector Culicoides and to cause BT in sheep. Our results demonstrate that two reassortment strains, which themselves became established in the field, had obtained high replication ability in C. sonorensis from one of the ancestral virus strains, which allowed inferences of the genome segments conferring this phenotypic trait. IMPORTANCE Reassortment between virus strains can lead to major shifts in the transmission parameters and virulence of segmented RNA viruses, with consequences for spread, persistence, and impact. The ability of these pathogens to adapt rapidly to their environment through this mechanism presents a major challenge in defining the conditions under which emergence can occur. Utilizing a representative mammalian host-insect vector infection and transmission model, we provide direct evidence of this phenomenon in closely related ancestral and reassortant strains of BTV. Our results demonstrate that efficient infection of Culicoides observed for one of three ancestral BTV strains was also evident in two reassortant strains that had subsequently emerged in the same ecosystem.


Assuntos
Vetores Artrópodes , Vírus Bluetongue , Bluetongue , Ceratopogonidae , Doenças dos Ovinos , Animais , Vetores Artrópodes/virologia , Bluetongue/transmissão , Bluetongue/virologia , Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Vírus Bluetongue/patogenicidade , Ceratopogonidae/virologia , Cervos , Fenótipo , Vírus Reordenados/metabolismo , Ovinos , Doenças dos Ovinos/transmissão , Doenças dos Ovinos/virologia , Replicação Viral
4.
PLoS Pathog ; 17(6): e1009654, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34115806

RESUMO

Leishmania parasites, causative agents of leishmaniasis, are currently divided into four subgenera: Leishmania, Viannia, Sauroleishmania and Mundinia. The recently established subgenus Mundinia has a wide geographical distribution and contains five species, three of which have the potential to infect and cause disease in humans. While the other Leishmania subgenera are transmitted exclusively by phlebotomine sand flies (Diptera: Psychodidae), natural vectors of Mundinia remain uncertain. This study investigates the potential of sand flies and biting midges of the genus Culicoides (Diptera: Ceratopogonidae) to transmit Leishmania parasites of the subgenus Mundinia. Sand flies (Phlebotomus argentipes, P. duboscqi and Lutzomyia migonei) and Culicoides biting midges (Culicoides sonorensis) were exposed to five Mundinia species through a chicken skin membrane and dissected at specific time intervals post bloodmeal. Potentially infected insects were also allowed to feed on ear pinnae of anaesthetized BALB/c mice and the presence of Leishmania DNA was subsequently confirmed in the mice using polymerase chain reaction analyses. In C. sonorensis, all Mundinia species tested were able to establish infection at a high rate, successfully colonize the stomodeal valve and produce a higher proportion of metacyclic forms than in sand flies. Subsequently, three parasite species, L. martiniquensis, L. orientalis and L. sp. from Ghana, were transmitted to the host mouse ear by C. sonorensis bite. In contrast, transmission experiments entirely failed with P. argentipes, although colonisation of the stomodeal valve was observed for L. orientalis and L. martiniquensis and metacyclic forms of L. orientalis were recorded. This laboratory-based transmission of Mundinia species highlights that Culicoides are potential vectors of members of this ancestral subgenus of Leishmania and we suggest further studies in endemic areas to confirm their role in the lifecycles of neglected pathogens.


Assuntos
Ceratopogonidae/parasitologia , Insetos Vetores/parasitologia , Leishmania , Leishmaniose/transmissão , Animais , Camundongos
5.
BMC Genomics ; 19(1): 624, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30134833

RESUMO

BACKGROUND: The new genomic technologies have provided novel insights into the genetics of interactions between vectors, viruses and hosts, which are leading to advances in the control of arboviruses of medical importance. However, the development of tools and resources available for vectors of non-zoonotic arboviruses remains neglected. Biting midges of the genus Culicoides transmit some of the most important arboviruses of wildlife and livestock worldwide, with a global impact on economic productivity, health and welfare. The absence of a suitable reference genome has hindered genomic analyses to date in this important genus of vectors. In the present study, the genome of Culicoides sonorensis, a vector of bluetongue virus (BTV) in the USA, has been sequenced to provide the first reference genome for these vectors. In this study, we also report the use of the reference genome to perform initial transcriptomic analyses of vector competence for BTV. RESULTS: Our analyses reveal that the genome is 189 Mb, assembled in 7974 scaffolds. Its annotation using the transcriptomic data generated in this study and in a previous study has identified 15,612 genes. Gene expression analyses of C. sonorensis females infected with BTV performed in this study revealed 165 genes that were differentially expressed between vector competent and refractory females. Two candidate genes, glutathione S-transferase (gst) and the antiviral helicase ski2, previously recognized as involved in vector competence for BTV in C. sonorensis (gst) and repressing dsRNA virus propagation (ski2), were confirmed in this study. CONCLUSIONS: The reference genome of C. sonorensis has enabled preliminary analyses of the gene expression profiles of vector competent and refractory individuals. The genome and transcriptomes generated in this study provide suitable tools for future research on arbovirus transmission. These provide a valuable resource for these vector lineage, which diverged from other major Dipteran vector families over 200 million years ago. The genome will be a valuable source of comparative data for other important Dipteran vector families including mosquitoes (Culicidae) and sandflies (Psychodidae), and together with the transcriptomic data can yield potential targets for transgenic modification in vector control and functional studies.


Assuntos
Vírus Bluetongue/fisiologia , Bluetongue/transmissão , Ceratopogonidae/genética , Ceratopogonidae/virologia , Genoma de Inseto , Insetos Vetores , Animais , Bluetongue/imunologia , Bluetongue/virologia , Vírus Bluetongue/imunologia , Ceratopogonidae/imunologia , Evolução Molecular , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Insetos Vetores/genética , Insetos Vetores/fisiologia , Anotação de Sequência Molecular , Análise de Sequência de DNA , Transcriptoma/genética
6.
Annu Rev Entomol ; 62: 343-358, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28141961

RESUMO

African horse sickness virus (AHSV) is a lethal arbovirus of equids that is transmitted between hosts primarily by biting midges of the genus Culicoides (Diptera: Ceratopogonidae). AHSV affects draft, thoroughbred, and companion horses and donkeys in Africa, Asia, and Europe. In this review, we examine the impact of AHSV critically and discuss entomological studies that have been conducted to improve understanding of its epidemiology and control. The transmission of AHSV remains a major research focus and we critically review studies that have implicated both Culicoides and other blood-feeding arthropods in this process. We explore AHSV both as an epidemic pathogen and within its endemic range as a barrier to development, an area of interest that has been underrepresented in studies of the virus to date. By discussing AHSV transmission in the African republics of South Africa and Senegal, we provide a more balanced view of the virus as a threat to equids in a diverse range of settings, thus leading to a discussion of key areas in which our knowledge of transmission could be improved. The use of entomological data to detect, predict and control AHSV is also examined, including reference to existing studies carried out during unprecedented outbreaks of bluetongue virus in Europe, an arbovirus of wild and domestic ruminants also transmitted by Culicoides.


Assuntos
Doença Equina Africana/história , Doença Equina Africana/transmissão , Ceratopogonidae/virologia , Equidae , Doenças dos Cavalos/história , Doenças dos Cavalos/transmissão , África , Doença Equina Africana/virologia , Vírus da Doença Equina Africana , Animais , Ásia , Europa (Continente) , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , História Medieval , Doenças dos Cavalos/virologia , Cavalos , Senegal , África do Sul
7.
J Med Entomol ; 53(1): 212-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26487248

RESUMO

Biting midges of the genus Culicoides transmit pathogens of veterinary importance such as bluetongue virus (Reoviridae: Orbivirus). The saliva of Culicoides is known to contain bioactive molecules including peptides and proteins with vasodilatory and immunomodulative properties. In this study, we detected activity of enzyme hyaluronidase in six Culicoides species that commonly occur in Europe and that are putative vectors of arboviruses. Hyaluronidase was present in all species studied, although its molecular size, sensitivity to SDS, and substrate specificity differed between species. Further studies on the potential effect of hyaluronidase activity on the vector competence of Culicoides species for arboviruses would be beneficial.


Assuntos
Ceratopogonidae/enzimologia , Hialuronoglucosaminidase/metabolismo , Insetos Vetores/enzimologia , Animais , Infecções por Arbovirus/transmissão , Saliva/enzimologia
8.
BMC Vet Res ; 10: 77, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24685104

RESUMO

In the past decade, two pathogens transmitted by Culicoides biting midges (Diptera: Ceratopogonidae), bluetongue virus and Schmallenberg virus, have caused serious economic losses to the European livestock industry, most notably affecting sheep and cattle. These outbreaks of arboviral disease have highlighted large knowledge gaps on the biology and ecology of indigenous Culicoides species. With these research gaps in mind, and as a means of assessing what potential disease outbreaks to expect in the future, an international workshop was held in May 2013 at Wageningen University, The Netherlands. It brought together research groups from Belgium, France, Germany, Spain, Switzerland, United Kingdom and The Netherlands, with diverse backgrounds in vector ecology, epidemiology, entomology, virology, animal health, modelling, and genetics. Here, we report on the key findings of this workshop.


Assuntos
Vírus Bluetongue/fisiologia , Bluetongue/transmissão , Infecções por Bunyaviridae/transmissão , Ceratopogonidae/virologia , Orthobunyavirus/fisiologia , Animais , Bovinos/virologia , Doenças dos Bovinos/transmissão , Doenças dos Bovinos/virologia , Doenças Transmissíveis Emergentes/veterinária , Educação , Europa (Continente) , Ovinos/virologia
9.
Front Immunol ; 15: 1328820, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357545

RESUMO

Introduction: Bluetongue virus (BTV) is an arthropod-borne Orbivirus that is almost solely transmitted by Culicoides biting midges and causes a globally important haemorrhagic disease, bluetongue (BT), in susceptible ruminants. Infection with BTV is characterised by immunosuppression and substantial lymphopenia at peak viraemia in the host. Methods: In this study, the role of cell-mediated immunity and specific T-cell subsets in BTV pathogenesis, clinical outcome, viral dynamics, immune protection, and onwards transmission to a susceptible Culicoides vector is defined in unprecedented detail for the first time, using an in vivo arboviral infection model system that closely mirrors natural infection and transmission of BTV. Individual circulating CD4+, CD8+, or WC1+ γδ T-cell subsets in sheep were depleted through the administration of specific monoclonal antibodies. Results: The absence of cytotoxic CD8+ T cells was consistently associated with less severe clinical signs of BT, whilst the absence of CD4+ and WC1+ γδ T cells both resulted in an increased clinical severity. The absence of CD4+ T cells also impaired both a timely protective neutralising antibody response and the production of IgG antibodies targeting BTV non-structural protein, NS2, highlighting that the CD4+ T-cell subset is important for a timely protective immune response. T cells did not influence viral replication characteristics, including onset/dynamics of viraemia, shedding, or onwards transmission of BTV to Culicoides. We also highlight differences in T-cell dependency for the generation of immunoglobulin subclasses targeting BTV NS2 and the structural protein, VP7. Discussion: This study identifies a diverse repertoire of T-cell functions during BTV infection in sheep, particularly in inducing specific anti-viral immune responses and disease manifestation, and will support more effective vaccination strategies.


Assuntos
Arbovírus , Vírus Bluetongue , Bluetongue , Ceratopogonidae , Ovinos , Animais , Gado , Viremia , Linfócitos T CD8-Positivos , Ruminantes , Subpopulações de Linfócitos T , Bluetongue/prevenção & controle , Ceratopogonidae/fisiologia
10.
J Virol ; 86(17): 9015-24, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22674991

RESUMO

Bluetongue virus (BTV) is the etiological agent of bluetongue (BT), a hemorrhagic disease of ruminants that can cause high levels of morbidity and mortality. BTV is an arbovirus transmitted between its ruminant hosts by Culicoides biting midges (Diptera: Ceratopogonidae). Recently, Europe has experienced some of the largest BT outbreaks ever recorded, including areas with no known history of the disease, leading to unprecedented economic and animal welfare issues. The current lack of genomic resources and genetic tools for Culicoides restricts any detailed study of the mechanisms involved in the virus-insect interactions. In contrast, the genome of the fruit fly (Drosophila melanogaster) has been successfully sequenced, and it is used extensively as a model of molecular pathways due to the existence of powerful genetic technology. In this study, D. melanogaster is investigated as a model for the replication and tropism of BTV. Using reverse genetics, a modified BTV-1 that expresses the fluorescent mCherry protein fused to the viral nonstructural protein NS3 (BTV-1/NS3mCherry) was generated. We demonstrate that BTV-1/NS3mCherry is not only replication competent as it retains many characteristics of the wild-type virus but also replicates efficiently in D. melanogaster after removal of the bacterial endosymbiont Wolbachia pipientis by antibiotic treatment. Furthermore, confocal microscopy shows that the tissue tropism of BTV-1/NS3mCherry in D. melanogaster resembles that described previously for BTV in Culicoides. Overall, the data presented in this study demonstrate the feasibility of using D. melanogaster as a genetic model to investigate BTV-insect interactions that cannot be otherwise addressed in vector species.


Assuntos
Vírus Bluetongue/fisiologia , Bluetongue/virologia , Doenças dos Bovinos/virologia , Modelos Animais de Doenças , Drosophila melanogaster/virologia , Tropismo Viral , Replicação Viral , Animais , Vírus Bluetongue/genética , Bovinos , Linhagem Celular , Ceratopogonidae/virologia , Drosophila melanogaster/genética , Insetos Vetores/virologia
11.
Zootaxa ; 3745: 243-56, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25113346

RESUMO

A new species, Culicoides paradoxalis Ramilo and Delécolle (Diptera: Ceratopogonidae), is described from specimens collected in France (Corsica and southeast region) and Portugal. This species resembles Culicoides lupicaris Downes and Kettle, and can be distinguished from this species and from Culicoides newsteadi Austen by its wing pattern, in addition to the absence of spines on the tarsomere 4 of female mid leg. In male, the presence of two appendices on the sternite 9 together with the absence of sensilla coeloconica on the flagellomere 11 is also useful to distinguish these three species. Separation from other members of the Culicoides subgenus is confirmed by the analysis of the Cytochrome Oxidase I (COI) mitochondrial marker. 


Assuntos
Ceratopogonidae/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Animais , Ceratopogonidae/anatomia & histologia , Ceratopogonidae/genética , Ecossistema , Feminino , Masculino , Dados de Sequência Molecular , Filogenia , Portugal
12.
J Med Entomol ; 49(3): 757-65, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22679886

RESUMO

Truck trap collections of Culicoides biting midges (Diptera: Ceratopogonidae) were made during 2 yr of sampling from 2008 to 2009 at a farm site in southern England. Samples were collected from 810 sample runs carried out over 52 d and contained 7,095 Culicoides of which more than half (50.3%) were identified as Culicoides obsoletus Meigen by using a multiplex polymerase chain reaction assay. Other commonly encountered species included Culicoides scoticus Downes & Kettle (14.7% of total Culicoides caught), Culicoides dewulfi Goetghebuer (3.7%), and Culicoides chiopterus Meigen (4.2%). The activity rates of these species were examined with regard to both meteorological factors (light intensity, humidity, temperature, and wind speed and direction) and other potentially contributing variables (lunar phase and brightness, sunset time, and year) by using generalized linear models. All the species examined were collected in greater abundance at sunset, although the relationship between underlying light intensity and numbers was less pronounced in C. dewulfi and C. chiopterus. Collections of Culicoides were reduced at temperatures above 21 degrees C and were inversely related to wind speed. Variation between species was recorded, however, in response to wind direction: C. dewulfi and C. chiopterus were associated with prevailing winds passing through fields containing livestock, whereas C. obsoletus and C. scoticus demonstrated no such relationship. A male:female ratio of 1:3.56 was observed in catches, and male populations were protandrous. These results are discussed with reference both to the ecology of these species and methods currently used to predict adult Culicoides movement and abundance in Europe.


Assuntos
Ceratopogonidae , Ritmo Circadiano , Animais , Monitoramento Ambiental , Feminino , Masculino , Estações do Ano , Reino Unido , Tempo (Meteorologia)
13.
Parasit Vectors ; 15(1): 251, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820957

RESUMO

BACKGROUND: Culicoides biting midges (Diptera: Ceratopogonidae) are biological vectors of livestock arboviruses that cause diseases with significant economic, social and welfare impacts. Within temperate regions, livestock movement during arbovirus outbreaks can be facilitated by declaring a 'seasonal vector-free period' (SVFP) during winter when adult Culicoides are not active. In this study we carry out long-term monitoring of Culicoides adult emergence from larval development habitats at two farms in the UK to validate current definitions of the SVFP and to provide novel bionomic data for known vector species. METHODS: Standard emergence traps were used to collect emerging adult Culicoides from dung heaps at two cattle farms in the south-east of England from June to November 2016 and March 2017 to May 2018. Culicoides were morphologically identified to species or complex level and count data were analysed using a simple population dynamic model for pre-adult Culicoides that included meteorological components. RESULTS: More than 96,000 Culicoides were identified from 267 emergence trapping events across 2 years, revealing clear evidence of bivoltinism from peaks of male populations of Culicoides obsoletus emerging from dung heaps. This pattern was also reflected in the emergence of adult female Obsoletus complex populations, which dominated the collections (64.4% of total catch) and emerged throughout the adult active period. Adult male C. obsoletus were observed emerging earlier than females (protandry) and emergence of both sexes occurred throughout the year. Culicoides chiopterus and Culicoides scoticus were also identified in spring emergence collections, providing the first evidence for the overwintering of larvae in dung heaps for these species. CONCLUSIONS: This study demonstrates continual and highly variable rates of emergence of Culicoides throughout the year. A lack of evidence for mass emergence in spring along with the ability to observe male generations highlights the need for complementary surveillance techniques in addition to light-trap data when investigating seasonality and phenology. Evidence was found of other vector species, C. chiopterus and C. scoticus, utilising cattle dung heaps as an overwintering habitat, further highlighting the importance of these habitats on farms.


Assuntos
Ceratopogonidae , Animais , Bovinos , Ecossistema , Inglaterra/epidemiologia , Fazendas , Feminino , Masculino , Estações do Ano
14.
Viruses ; 14(3)2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35336912

RESUMO

Bluetongue virus (BTV) and African horse sickness virus (AHSV) cause economically important diseases that are currently exotic to the United Kingdom (UK), but have significant potential for introduction and onward transmission. Given the susceptibility of animals kept in zoo collections to vector-borne diseases, a qualitative risk assessment for the introduction of BTV and AHSV to ZSL London Zoo was performed. Risk pathways for each virus were identified and assessed using published literature, animal import data and outputs from epidemiological models. Direct imports of infected animals, as well as wind-borne infected Culicoides, were considered as routes of incursion. The proximity of ongoing disease events in mainland Europe and proven capability of transmission to the UK places ZSL London Zoo at higher risk of BTV release and exposure (estimated as low to medium) than AHSV (estimated as very low to low). The recent long-range expansion of AHSV into Thailand from southern Africa highlights the need for vector competence studies of Palearctic Culicoides for AHSV to assess the risk of transmission in this region.


Assuntos
Vírus da Doença Equina Africana , Doença Equina Africana , Vírus Bluetongue , Bluetongue , Ceratopogonidae , Doença Equina Africana/epidemiologia , Animais , Bluetongue/epidemiologia , Cavalos , Medição de Risco , Ovinos , Reino Unido/epidemiologia
15.
Parasit Vectors ; 14(1): 55, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461612

RESUMO

BACKGROUND: Culicoides biting midges (Diptera: Ceratopogonidae) are biological vectors of internationally important arboviruses and inflict biting nuisance on humans, companion animals and livestock. In temperate regions, transmission of arboviruses is limited by temperature thresholds, in both replication and dissemination of arboviruses within the vector and in the flight activity of adult Culicoides. This study aims to determine the cold-temperature thresholds for flight activity of Culicoides from the UK under laboratory conditions. METHODS: Over 18,000 Culicoides adults were collected from the field using 4 W down-draught miniature ultraviolet Centers for Disease Control traps. Populations of Culicoides were sampled at three different geographical locations within the UK during the summer months and again in the autumn at one geographical location. Activity at constant temperatures was assessed using a bioassay that detected movement of adult Culicoides towards an ultraviolet light source over a 24-h period. RESULTS: The proportion of active adult Culicoides increased with temperature but cold temperature thresholds for activity varied significantly according to collection season and location. Populations dominated by the subgenus Avaritia collected in South East England had a lower activity threshold temperature in the autumn (4 °C) compared with populations collected in the summer (10 °C). Within the subgenus Avaritia, Culicoides scoticus was significantly more active across all temperatures tested than Culicoides obsoletus within the experimental setup. Populations of Culicoides impunctatus collected in the North East of England were only active once temperatures reached 14 °C. Preliminary data suggested flight activity of the subgenus Avaritia does not differ between populations in South East England and those in the Scottish Borders. CONCLUSIONS: These findings demonstrate seasonal changes in temperature thresholds for flight and across different populations of Culicoides. These data, alongside that defining thresholds for virus replication within Culicoides, provide a primary tool for risk assessment of arbovirus transmission in temperate regions. In addition, the study also provides a comparison with thermal limits derived directly from light-suction trapping data, which is currently used as the main method to define adult Culicoides activity during surveillance.


Assuntos
Ceratopogonidae/fisiologia , Temperatura Baixa , Insetos Vetores/fisiologia , Movimento , Animais , Infecções por Arbovirus/transmissão , Arbovírus/fisiologia , Ceratopogonidae/virologia , Estudos de Coortes , Feminino , Insetos Vetores/virologia , Laboratórios , Masculino , Estações do Ano , Reino Unido
16.
Trends Microbiol ; 17(4): 172-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19299131

RESUMO

In June 2006, bluetongue virus, an arboviral pathogen of ruminants, appeared in northern Europe for the first time, successfully overwintered and subsequently caused substantial losses to the farming sector in 2007 and 2008. This emergence served as a test of how the probability of arboviral incursion into new regions is assessed and has highlighted the reliance of decision making on paradigms that are not always underpinned by basic biological data. In this review, we highlight those areas of the epidemiology of bluetongue that are poorly understood, reflect upon why certain vital areas of research have received little attention and, finally, examine strategies that could aid future risk assessment and intervention.


Assuntos
Vírus Bluetongue/fisiologia , Bluetongue/epidemiologia , Bluetongue/transmissão , Ceratopogonidae/virologia , Animais , Bluetongue/virologia , Vírus Bluetongue/isolamento & purificação , Surtos de Doenças , Europa (Continente)/epidemiologia , Ruminantes/virologia
17.
Microorganisms ; 8(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516979

RESUMO

Bluetongue virus (BTV) causes an economically important disease, bluetongue (BT), in susceptible ruminants and is transmitted primarily by species of Culicoides biting midges (Diptera: Ceratopogonidae). Since 2006, northern Europe has experienced multiple incursions of BTV through a variety of routes of entry, including major outbreaks of strains of BTV serotype 8 (BTV-8) and BTV serotype 1 (BTV-1), which overlapped in distribution within southern Europe. In this paper, we examined the variation in response to coinfection with strains of BTV-1 and BTV-8 using an in vivo transmission model involving Culicoides sonorensis, low passage virus strains, and sheep sourced in the United Kingdom. In the study, four sheep were simultaneously infected using BTV-8 and BTV-1 intrathoracically inoculated C. sonorensis and co-infections of all sheep with both strains were established. However, there were significant variations in both the initiation and peak levels of virus RNA detected throughout the experiment, as well as in the infection rates in the C. sonorensis that were blood-fed on experimentally infected sheep at peak viremia. This is discussed in relation to the potential for reassortment between these strains in the field and the policy implications for detection of BTV strains.

18.
Transbound Emerg Dis ; 67(5): 1764-1767, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32593205

RESUMO

African horse sickness was confirmed in horses in Thailand during March 2020. The virus was determined to belong to serotype 1 and is phylogenetically closely related to isolates from South Africa. This is the first incidence of African horse sickness occurring in South East Asia and of serotype 1 outside of Africa.

19.
Microorganisms ; 8(6)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486323

RESUMO

Culicoides biting midges (Diptera: Ceratopogonidae) transmit arboviruses of veterinary or medical importance, including bluetongue virus (BTV) and Schmallenberg virus, as well as causing severe irritation to livestock and humans. Arthropod cell lines are essential laboratory research tools for the isolation and propagation of vector-borne pathogens and the investigation of host-vector-pathogen interactions. Here we report the establishment of two continuous cell lines, CNE/LULS44 and CNE/LULS47, from embryos of Culicoides nubeculosus, a midge distributed throughout the Western Palearctic region. Species origin of the cultured cells was confirmed by polymerase chain reaction (PCR) amplification and sequencing of a fragment of the cytochrome oxidase 1 gene, and the absence of bacterial contamination was confirmed by bacterial 16S rRNA PCR. Both lines have been successfully cryopreserved and resuscitated. The majority of cells examined in both lines had the expected diploid chromosome number of 2n = 6. Transmission electron microscopy of CNE/LULS44 cells revealed the presence of large mitochondria within cells of a diverse population, while arrays of virus-like particles were not seen. CNE/LULS44 cells supported replication of a strain of BTV serotype 1, but not of a strain of serotype 26 which is not known to be insect-transmitted. These new cell lines will expand the scope of research on Culicoides-borne pathogens.

20.
Vet Rec ; 187(11): e96, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-32917835

RESUMO

BACKGROUND: Bluetongue (BT) is a viral disease of ruminants and camelids which can have a significant impact on animal health and welfare and cause severe economic loss. The UK has been officially free of bluetongue virus (BTV) since 2011. In 2015, BTV-8 re-emerged in France and since then BTV has been spreading throughout Europe. In response to this outbreak, risk-based active surveillance was carried out at the end of the vector seasons in 2017 and 2018 to assess the risk of incursion of BTV into Great Britain. METHOD: Atmospheric dispersion modelling identified counties on the south coast of England at higher risk of an incursion. Blood samples were collected from cattle in five counties based on a sample size designed to detect at least one positive if the prevalence was 5 per cent or greater, with 95 per cent confidence. RESULTS: No virus was detected in the 478 samples collected from 32 farms at the end of the 2017 vector season or in the 646 samples collected from 43 farms at the end of the 2018 vector season, when tested by RT-qPCR. CONCLUSION: The negative results from this risk-based survey provided evidence to support the continuation of the UK's official BTV-free status.


Assuntos
Bluetongue/epidemiologia , Doenças dos Bovinos/epidemiologia , Vigilância de Evento Sentinela/veterinária , Animais , Vírus Bluetongue/genética , Vírus Bluetongue/isolamento & purificação , Bovinos , Estudos Transversais , Inglaterra/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA