Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hepatology ; 80(3): 566-577, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373106

RESUMO

BACKGROUND AND AIMS: Sustained inflammation and hepatocyte injury in chronic liver disease activate HSCs to transdifferentiate into fibrogenic, contractile myofibroblasts. We investigated the role of protocadherin 7 (PCDH7), a cadherin family member not previously characterized in the liver, whose expression is restricted to HSCs. APPROACH AND RESULTS: We created a PCDH7 fl/fl mouse line, which was crossed to lecithin retinol acyltransferase-Cre mice to generate HSC-specific PCDH7 knockout animals. HSC contraction in vivo was tested in response to the HSC-selective vasoconstrictor endothelin-1 using intravital multiphoton microscopy. To establish a PCDH7 null HSC line, cells were isolated from PCDH7 fl/fl mice and infected with adenovirus-expressing Cre. Hepatic expression of PCDH7 was strictly restricted to HSCs. Knockout of PCDH7 in vivo abrogated HSC-mediated sinusoidal contraction in response to endothelin-1. In cultured HSCs, loss of PCDH7 markedly attenuated contractility within collagen gels and led to altered gene expression in pathways governing adhesion and vasoregulation. Loss of contractility in PCDH7 knockout cells was impaired Rho-GTPase signaling, as demonstrated by altered gene expression, reduced assembly of F-actin fibers, and loss of focal adhesions. CONCLUSIONS: The stellate cell-specific cadherin, PCDH7, is a novel regulator of HSC contractility whose loss leads to cytoskeletal remodeling and sinusoidal relaxation.


Assuntos
Caderinas , Células Estreladas do Fígado , Camundongos Knockout , Animais , Camundongos , Caderinas/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/fisiologia , Protocaderinas , Endotelina-1/metabolismo , Células Cultivadas
2.
Gut ; 72(4): 736-748, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35584893

RESUMO

OBJECTIVE: The diversity of the tumour microenvironment (TME) of intrahepatic cholangiocarcinoma (iCCA) has not been comprehensively assessed. We aimed to generate a novel molecular iCCA classifier that incorporates elements of the stroma, tumour and immune microenvironment ('STIM' classification). DESIGN: We applied virtual deconvolution to transcriptomic data from ~900 iCCAs, enabling us to devise a novel classification by selecting for the most relevant TME components. Murine models were generated through hydrodynamic tail vein injection and compared with the human disease. RESULTS: iCCA is composed of five robust STIM classes encompassing both inflamed (35%) and non-inflamed profiles (65%). The inflamed classes, named immune classical (~10%) and inflammatory stroma (~25%), differ in oncogenic pathways and extent of desmoplasia, with the inflammatory stroma showing T cell exhaustion, abundant stroma and KRAS mutations (p<0.001). Analysis of cell-cell interactions highlights cancer-associated fibroblast subtypes as potential mediators of immune evasion. Among the non-inflamed classes, the desert-like class (~20%) harbours the lowest immune infiltration with abundant regulatory T cells (p<0.001), whereas the hepatic stem-like class (~35%) is enriched in 'M2-like' macrophages, mutations in IDH1/2 and BAP1, and FGFR2 fusions. The remaining class (tumour classical: ~10%) is defined by cell cycle pathways and poor prognosis. Comparative analysis unveils high similarity between a KRAS/p19 murine model and the inflammatory stroma class (p=0.02). The KRAS-SOS inhibitor, BI3406, sensitises a KRAS-mutant iCCA murine model to anti-PD1 therapy. CONCLUSIONS: We describe a comprehensive TME-based stratification of iCCA. Cross-species analysis establishes murine models that align closely to human iCCA for the preclinical testing of combination strategies.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Microambiente Tumoral
3.
Sci Signal ; 16(787): eadf6696, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253090

RESUMO

Organ size is maintained by the controlled proliferation of distinct cell populations. In the mouse liver, hepatocytes in the midlobular zone that are positive for cyclin D1 (CCND1) repopulate the parenchyma at a constant rate to preserve liver mass. Here, we investigated how hepatocyte proliferation is supported by hepatic stellate cells (HSCs), pericytes that are in close proximity to hepatocytes. We used T cells to ablate nearly all HSCs in the murine liver, enabling the unbiased characterization of HSC functions. In the normal liver, complete loss of HSCs persisted for up to 10 weeks and caused a gradual reduction in liver mass and in the number of CCND1+ hepatocytes. We identified neurotrophin-3 (Ntf-3) as an HSC-produced factor that induced the proliferation of midlobular hepatocytes through the activation of tropomyosin receptor kinase B (TrkB). Treating HSC-depleted mice with Ntf-3 restored CCND1+ hepatocytes in the midlobular region and increased liver mass. These findings establish that HSCs form the mitogenic niche for midlobular hepatocytes and identify Ntf-3 as a hepatocyte growth factor.


Assuntos
Células Estreladas do Fígado , Fígado , Neurotrofina 3 , Animais , Camundongos , Proliferação de Células , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Neurotrofina 3/metabolismo
4.
Front Endocrinol (Lausanne) ; 13: 867940, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757404

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the dominant cause of liver disease worldwide. Nonalcoholic steatohepatitis (NASH), a more aggressive presentation of NAFLD, is characterized by severe hepatocellular injury, inflammation, and fibrosis. Chronic inflammation and heightened immune cell activity have emerged as hallmark features of NASH and key drivers of fibrosis through the activation of hepatic stellate cells (HSCs). Recent advances in our understanding of the molecular and cellular pathways in NASH have highlighted extensive crosstalk between HSCs and hepatic immune populations that strongly influences disease activity. Here, we review these findings, emphasizing the roles of HSCs in liver immunity and inflammation, key cell-cell interactions, and exciting areas for future investigation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Fibrose , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Inflamação/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
5.
PLoS One ; 16(1): e0244763, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33395434

RESUMO

BACKGROUND & AIM: Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD) that is responsible for a growing fraction of cirrhosis and liver cancer cases worldwide. Changes in the gut microbiome have been implicated in NASH pathogenesis, but the lack of suitable murine models has been a barrier to progress. We have therefore characterized the microbiome in a well-validated murine NASH model to establish its value in modeling human disease. METHODS: The composition of intestinal microbiota was monitored in mice on a 12- or 24-week NASH protocol consisting of high fat, high sugar Western Diet (WD) plus once weekly i.p injection of low-dose CCl4. Additional mice were subjected to WD-only or CCl4-only conditions to assess the independent effect of these variables on the microbiome. RESULTS: There was substantial remodeling of the intestinal microbiome in NASH mice, characterized by declines in both species diversity and bacterial abundance. Based on changes to beta diversity, microbiota from NASH mice clustered separately from controls in principal coordinate analyses. A comparison between WD-only and CCl4-only controls with the NASH model identified WD as the primary driver of early changes to the microbiome, resulting in loss of diversity within the 1st week. A NASH signature emerged progressively at weeks 6 and 12, including, most notably, a reproducible bloom of the Firmicute order Erysipelotrichales. CONCLUSIONS: We have established a valuable model to study the role of gut microbes in NASH, enabling us to identify a new NASH gut microbiome signature.


Assuntos
Disbiose/microbiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Bactérias , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Disbiose/complicações , Fezes/microbiologia , Fibrose/complicações , Fibrose/microbiologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Variação Genética/genética , Humanos , Inflamação/complicações , Cirrose Hepática/patologia , Neoplasias Hepáticas/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA