Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 97(3): 1089-1125, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28566538

RESUMO

The Ca2+ extrusion function of the four mammalian isoforms of the plasma membrane calcium ATPases (PMCAs) is well established. There is also ever-increasing detail known of their roles in global and local Ca2+ homeostasis and intracellular Ca2+ signaling in a wide variety of cell types and tissues. It is becoming clear that the spatiotemporal patterns of expression of the PMCAs and the fact that their abundances and relative expression levels vary from cell type to cell type both reflect and impact on their specific functions in these cells. Over recent years it has become increasingly apparent that these genes have potentially significant roles in human health and disease, with PMCAs1-4 being associated with cardiovascular diseases, deafness, autism, ataxia, adenoma, and malarial resistance. This review will bring together evidence of the variety of tissue-specific functions of PMCAs and will highlight the roles these genes play in regulating normal physiological functions and the considerable impact the genes have on human disease.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Membrana Celular/enzimologia , Doença/etiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Animais , Doença/genética , Predisposição Genética para Doença , Variação Genética , Homeostase , Humanos , Especificidade de Órgãos , Fenótipo , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Conformação Proteica , Relação Estrutura-Atividade
2.
3.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834636

RESUMO

Reduction in cardiac contractility is common in severe sepsis. However, the pathological mechanism is still not fully understood. Recently it has been found that circulating histones released after extensive immune cell death play important roles in multiple organ injury and disfunction, particularly in cardiomyocyte injury and contractility reduction. How extracellular histones cause cardiac contractility depression is still not fully clear. In this work, using cultured cardiomyocytes and a histone infusion mouse model, we demonstrate that clinically relevant histone concentrations cause significant increases in intracellular calcium concentrations with subsequent activation and enriched localization of calcium-dependent protein kinase C (PKC) α and ßII into the myofilament fraction of cardiomyocytes in vitro and in vivo. Furthermore, histones induced dose-dependent phosphorylation of cardiac troponin I (cTnI) at the PKC-regulated phosphorylation residues (S43 and T144) in cultured cardiomyocytes, which was also confirmed in murine cardiomyocytes following intravenous histone injection. Specific inhibitors against PKCα and PKCßII revealed that histone-induced cTnI phosphorylation was mainly mediated by PKCα activation, but not PKCßII. Blocking PKCα also significantly abrogated histone-induced deterioration in peak shortening, duration and the velocity of shortening, and re-lengthening of cardiomyocyte contractility. These in vitro and in vivo findings collectively indicate a potential mechanism of histone-induced cardiomyocyte dysfunction driven by PKCα activation with subsequent enhanced phosphorylation of cTnI. These findings also indicate a potential mechanism of clinical cardiac dysfunction in sepsis and other critical illnesses with high levels of circulating histones, which holds the potential translational benefit to these patients by targeting circulating histones and downstream pathways.


Assuntos
Proteína Quinase C-alfa , Sepse , Camundongos , Animais , Proteína Quinase C-alfa/metabolismo , Histonas/metabolismo , Fosforilação , Depressão , Miócitos Cardíacos/metabolismo , Troponina I/metabolismo , Sepse/metabolismo , Cálcio/metabolismo , Contração Miocárdica
4.
J Mol Cell Cardiol ; 172: 41-51, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35926724

RESUMO

Plasma membrane calcium ATPase 1 (PMCA1, Atp2b1) is emerging as a key contributor to cardiac physiology, involved in calcium handling and myocardial signalling. In addition, genome wide association studies have associated PMCA1 in several areas of cardiovascular disease including hypertension and myocardial infarction. Here, we investigated the role of PMCA1 in basal cardiac function and heart rhythm stability. Cardiac structure, heart rhythm and arrhythmia susceptibility were assessed in a cardiomyocyte-specific PMCA1 deletion (PMCA1CKO) mouse model. PMCA1CKO mice developed abnormal heart rhythms related to ventricular repolarisation dysfunction and displayed an increased susceptibility to ventricular arrhythmias. We further assessed the levels of cardiac ion channels using qPCR and found a downregulation of the voltage-dependent potassium channels, Kv4.2, with a corresponding reduction in the transient outward potassium current which underlies ventricular repolarisation in the murine heart. The changes in heart rhythm were found to occur in the absence of any structural cardiomyopathy. To further assess the molecular changes occurring in PMCA1CKO hearts, we performed proteomic analysis. Functional characterisation of differentially expressed proteins suggested changes in pathways related to metabolism, protein-binding, and pathways associated cardiac function including ß-adrenergic signalling. Together, these data suggest an important role for PMCA1 in basal cardiac function in relation to heart rhythm control, with reduced cardiac PMCA1 expression resulting in an increased risk of arrhythmia development.


Assuntos
ATPases Transportadoras de Cálcio da Membrana Plasmática , Disfunção Ventricular , Animais , Camundongos , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Estudo de Associação Genômica Ampla , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Proteômica , Disfunção Ventricular/metabolismo
5.
J Cell Sci ; 132(15)2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31289197

RESUMO

Fibrosis is associated with almost all forms of chronic cardiac and skeletal muscle diseases. The accumulation of extracellular matrix impairs the contractility of muscle cells contributing to organ failure. Transforming growth factor ß (TGF-ß) plays a pivotal role in fibrosis, activating pro-fibrotic gene programmes via phosphorylation of SMAD2/3 transcription factors. However, the mechanisms that control de-phosphorylation of SMAD2 and SMAD3 (SMAD2/3) have remained poorly characterized. Here, we show that tissue non-specific alkaline phosphatase (TNAP, also known as ALPL) is highly upregulated in hypertrophic hearts and in dystrophic skeletal muscles, and that the abrogation of TGF-ß signalling in TNAP-positive cells reduces vascular and interstitial fibrosis. We show that TNAP colocalizes and interacts with SMAD2. The TNAP inhibitor MLS-0038949 increases SMAD2/3 phosphorylation, while TNAP overexpression reduces SMAD2/3 phosphorylation and the expression of downstream fibrotic genes. Overall our data demonstrate that TNAP negatively regulates TGF-ß signalling and likely represents a mechanism to limit fibrosis.


Assuntos
Fosfatase Alcalina/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo , Fosfatase Alcalina/genética , Animais , Fibrose , Camundongos , Camundongos Knockout , Miocárdio/patologia , Proteína Smad2/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta/genética
6.
Circ Res ; 124(5): 696-711, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30620686

RESUMO

RATIONALE: Secreted and membrane-bound proteins, which account for 1/3 of all proteins, play critical roles in heart health and disease. The endoplasmic reticulum (ER) is the site for synthesis, folding, and quality control of these proteins. Loss of ER homeostasis and function underlies the pathogenesis of many forms of heart disease. OBJECTIVE: To investigate mechanisms responsible for regulating cardiac ER function, and to explore therapeutic potentials of strengthening ER function to treat heart disease. METHODS AND RESULTS: Screening a range of signaling molecules led to the discovery that Pak (p21-activated kinase)2 is a stress-responsive kinase localized in close proximity to the ER membrane in cardiomyocytes. We found that Pak2 cardiac deleted mice (Pak2-CKO) under tunicamycin stress or pressure overload manifested a defective ER response, cardiac dysfunction, and profound cell death. Small chemical chaperone tauroursodeoxycholic acid treatment of Pak2-CKO mice substantiated that Pak2 loss-induced cardiac damage is an ER-dependent pathology. Gene array analysis prompted a detailed mechanistic study, which revealed that Pak2 regulation of protective ER function was via the IRE (inositol-requiring enzyme)-1/XBP (X-box-binding protein)-1-dependent pathway. We further discovered that this regulation was conferred by Pak2 inhibition of PP2A (protein phosphatase 2A) activity. Moreover, IRE-1 activator, Quercetin, and adeno-associated virus serotype-9-delivered XBP-1s were able to relieve ER dysfunction in Pak2-CKO hearts. This provides functional evidence, which supports the mechanism underlying Pak2 regulation of IRE-1/XBP-1s signaling. Therapeutically, inducing Pak2 activation by genetic overexpression or adeno-associated virus serotype-9-based gene delivery was capable of strengthening ER function, improving cardiac performance, and diminishing apoptosis, thus protecting the heart from failure. CONCLUSIONS: Our findings uncover a new cardioprotective mechanism, which promotes a protective ER stress response via the modulation of Pak2. This novel therapeutic strategy may present as a promising option for treating cardiac disease and heart failure.


Assuntos
Estresse do Retículo Endoplasmático , Insuficiência Cardíaca/enzimologia , Miócitos Cardíacos/enzimologia , Quinases Ativadas por p21/metabolismo , Animais , Apoptose , Linhagem Celular , Modelos Animais de Doenças , Terapia Genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/terapia , Células-Tronco Pluripotentes Induzidas/enzimologia , Macaca mulatta , Masculino , Proteínas de Membrana/metabolismo , Camundongos Knockout , Miócitos Cardíacos/patologia , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Transdução de Sinais , Proteína 1 de Ligação a X-Box/metabolismo , Quinases Ativadas por p21/deficiência , Quinases Ativadas por p21/genética
7.
J Muscle Res Cell Motil ; 40(3-4): 319-333, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31520263

RESUMO

The cardiomyocyte plasma membrane, termed the sarcolemma, is fundamental for regulating a myriad of cellular processes. For example, the structural integrity of the cardiomyocyte sarcolemma is essential for mediating cardiac contraction by forming microdomains such as the t-tubular network, caveolae and the intercalated disc. Significantly, remodelling of these sarcolemma microdomains is a key feature in the development and progression of heart failure (HF). However, despite extensive characterisation of the associated molecular and ultrastructural events there is a lack of clarity surrounding the mechanisms driving adverse morphological rearrangements. The sarcolemma also provides protection, and is the cell's first line of defence, against external stresses such as oxygen and nutrient deprivation, inflammation and oxidative stress with a loss of sarcolemma viability shown to be a key step in cell death via necrosis. Significantly, cumulative cell death is also a feature of HF, and is linked to disease progression and loss of cardiac function. Herein, we will review the link between structural and molecular remodelling of the sarcolemma associated with the progression of HF, specifically considering the evidence for: (i) Whether intrinsic, evolutionary conserved, plasma membrane injury-repair mechanisms are in operation in the heart, and (ii) if deficits in key 'wound-healing' proteins (annexins, dysferlin, EHD2 and MG53) may play a yet to be fully appreciated role in triggering sarcolemma microdomain remodelling and/or necrosis. Cardiomyocytes are terminally differentiated with very limited regenerative capability and therefore preserving cell viability and cardiac function is crucially important. This review presents a novel perspective on sarcolemma remodelling by considering whether targeting proteins that regulate sarcolemma injury-repair may hold promise for developing new strategies to attenuate HF progression.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Miócitos Cardíacos/metabolismo , Sarcolema/fisiologia , Humanos
8.
Circ Res ; 121(9): 1058-1068, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28821541

RESUMO

RATIONALE: Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training-induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes. OBJECTIVE: To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4. METHODS AND RESULTS: As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3'-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5. CONCLUSIONS: HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes.


Assuntos
Bradicardia/metabolismo , Exercício Físico/fisiologia , Marcação de Genes/métodos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , MicroRNAs/metabolismo , Proteínas Musculares/metabolismo , Condicionamento Físico Animal/fisiologia , Canais de Potássio/metabolismo , Adolescente , Adulto , Animais , Bradicardia/genética , Bradicardia/fisiopatologia , Técnicas de Silenciamento de Genes/métodos , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas Musculares/genética , Condicionamento Físico Animal/métodos , Canais de Potássio/genética , Nó Sinoatrial/metabolismo , Nó Sinoatrial/fisiopatologia , Adulto Jovem
9.
J Cell Mol Med ; 22(2): 861-872, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29193716

RESUMO

Cardiovascular disease is the world's leading cause of morbidity and mortality, with high blood pressure (BP) contributing to increased severity and number of adverse outcomes. Plasma membrane calcium ATPase 4 (PMCA4) has been previously shown to modulate systemic BP. However, published data are conflicting, with both overexpression and inhibition of PMCA4 in vivo shown to increase arterial contractility. Hence, our objective was to determine the role of PMCA4 in the regulation of BP and to further understand how PMCA4 functionally regulates BP using a novel specific inhibitor to PMCA4, aurintricarboxylic acid (ATA). Our approach assessed conscious BP and contractility of resistance arteries from PMCA4 global knockout (PMCA4KO) mice compared to wild-type animals. Global ablation of PMCA4 had no significant effect on BP, arterial structure or isolated arterial contractility. ATA treatment significantly reduced BP and arterial contractility in wild-type mice but had no significant effect in PMCA4KO mice. The effect of ATAin vivo and ex vivo was abolished by the neuronal nitric oxide synthase (nNOS) inhibitor Vinyl-l-NIO. Thus, this highlights differences in the effects of PMCA4 ablation and acute inhibition on the vasculature. Importantly, for doses here used, we show the vascular effects of ATA to be specific for PMCA4 and that ATA may be a further experimental tool for elucidating the role of PMCA4.


Assuntos
Pressão Sanguínea , Artérias Mesentéricas/fisiopatologia , Óxido Nítrico Sintase Tipo I/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/antagonistas & inibidores , Animais , Ácido Aurintricarboxílico/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Estado de Consciência , Técnicas In Vitro , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Camundongos Knockout , Modelos Biológicos , Peptídeos/farmacologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
10.
Circulation ; 135(7): 683-699, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-27899394

RESUMO

BACKGROUND: Ventricular arrhythmia is a leading cause of cardiac mortality. Most antiarrhythmics present paradoxical proarrhythmic side effects, culminating in a greater risk of sudden death. METHODS: We describe a new regulatory mechanism linking mitogen-activated kinase kinase-7 deficiency with increased arrhythmia vulnerability in hypertrophied and failing hearts using mouse models harboring mitogen-activated kinase kinase-7 knockout or overexpression. The human relevance of this arrhythmogenic mechanism is evaluated in human-induced pluripotent stem cell-derived cardiomyocytes. Therapeutic potentials by targeting this mechanism are explored in the mouse models and human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: Mechanistically, hypertrophic stress dampens expression and phosphorylation of mitogen-activated kinase kinase-7. Such mitogen-activated kinase kinase-7 deficiency leaves histone deacetylase-2 unphosphorylated and filamin-A accumulated in the nucleus to form a complex with Krüppel-like factor-4. This complex leads to Krüppel-like factor-4 disassociation from the promoter regions of multiple key potassium channel genes (Kv4.2, KChIP2, Kv1.5, ERG1, and Kir6.2) and reduction of their transcript levels. Consequent repolarization delays result in ventricular arrhythmias. Therapeutically, targeting the repressive function of the Krüppel-like factor-4/histone deacetylase-2/filamin-A complex with the histone deacetylase-2 inhibitor valproic acid restores K+ channel expression and alleviates ventricular arrhythmias in pathologically remodeled hearts. CONCLUSIONS: Our findings unveil this new gene regulatory avenue as a new antiarrhythmic target where repurposing of the antiepileptic drug valproic acid as an antiarrhythmic is supported.


Assuntos
Arritmias Cardíacas/prevenção & controle , MAP Quinase Quinase 7/metabolismo , Animais , Arritmias Cardíacas/fisiopatologia , Epigênese Genética , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Miócitos Cardíacos/metabolismo , Ratos
11.
J Mol Cell Cardiol ; 109: 38-47, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28684310

RESUMO

AIMS: Ischaemic cardiovascular disease is a major cause of morbidity and mortality worldwide. Despite promising results from pre-clinical animal models, VEGF-based strategies for therapeutic angiogenesis have yet to achieve successful reperfusion of ischaemic tissues in patients. Failure to restore efficient VEGF activity in the ischaemic organ remains a major problem in current pro-angiogenic therapeutic approaches. Plasma membrane calcium ATPase 4 (PMCA4) negatively regulates VEGF-activated angiogenesis via inhibition of the calcineurin/NFAT signalling pathway. PMCA4 activity is inhibited by the small molecule aurintricarboxylic acid (ATA). We hypothesize that inhibition of PMCA4 with ATA might enhance VEGF-induced angiogenesis. METHODS AND RESULTS: We show that inhibition of PMCA4 with ATA in endothelial cells triggers a marked increase in VEGF-activated calcineurin/NFAT signalling that translates into a strong increase in endothelial cell motility and blood vessel formation. ATA enhances VEGF-induced calcineurin signalling by disrupting the interaction between PMCA4 and calcineurin at the endothelial-cell membrane. ATA concentrations at the nanomolar range, that efficiently inhibit PMCA4, had no deleterious effect on endothelial-cell viability or zebrafish embryonic development. However, high ATA concentrations at the micromolar level impaired endothelial cell viability and tubular morphogenesis, and were associated with toxicity in zebrafish embryos. In mice undergoing experimentally-induced hindlimb ischaemia, ATA treatment significantly increased the reperfusion of post-ischaemic limbs. CONCLUSIONS: Our study provides evidence for the therapeutic potential of targeting PMCA4 to improve VEGF-based pro-angiogenic interventions. This goal will require the development of refined, highly selective versions of ATA, or the identification of novel PMCA4 inhibitors.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Membrana Celular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Ácido Aurintricarboxílico/farmacologia , ATPases Transportadoras de Cálcio/genética , Membrana Celular/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Camundongos , Camundongos Knockout , Neovascularização Fisiológica/efeitos dos fármacos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
12.
J Physiol ; 595(24): 7383-7398, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29023784

RESUMO

KEY POINTS: The role of plasma membrane Ca2+ -ATPase 1 (PMCA1) in Ca2+ homeostasis and electrical stability in atrial tissue has been investigated at both organ and cellular levels in mice with cardiomyocyte-specific deletion of PMCA1 (PMCA1cko ) The PMCA1cko hearts became more susceptible to atrial arrhythmic stress conditions than PMCA1loxP/loxP hearts. PMCA1 deficiency alters cellular Ca2+ homeostasis under both baseline and stress conditions. PMCA1 is required for maintaining cellular Ca2+ homeostasis and electrical stability in murine atria under stress conditions. ABSTRACT: To determine the role of plasma membrane Ca2+ -ATPase 1 (PMCA1) in maintaining Ca2+ homeostasis and electrical stability in the atrium under physiological and stress conditions, mice with a cardiomyocyte-specific deletion of PMCA1 (PMCA1cko ) and their control littermates (PMCA1loxP/loxP ) were studied at the organ and cellular levels. At the organ level, the PMCA1cko hearts became more susceptible to atrial arrhythmias under rapid programmed electrical stimulation compared with the PMCA1loxP/loxP hearts, and such arrhythmic events became more severe under Ca2+ overload conditions. At the cellular level, the occurrence of irregular-type action potentials of PMCA1cko atrial myocytes increased significantly under Ca2+ overload conditions and/or at higher frequency of stimulation. The decay of Na+ /Ca2+ exchanger current that followed a stimulation protocol was significantly prolonged in PMCA1cko atrial myocytes under basal conditions, with Ca2+ overload leading to even greater prolongation. In conclusion, PMCA1 is required for maintaining Ca2+ homeostasis and electrical stability in the atrium. This is particularly critical during fast removal of Ca2+ from the cytosol, which is required under stress conditions.


Assuntos
Cálcio/metabolismo , Átrios do Coração/metabolismo , Potenciais da Membrana , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Animais , Função Atrial , Células Cultivadas , Átrios do Coração/citologia , Homeostase , Masculino , Camundongos , Miócitos Cardíacos/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
14.
Crit Care Med ; 44(5): e278-88, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26588828

RESUMO

OBJECTIVES: Cardiac complications are common in critical illness and associated with grave consequences. In this setting, elevated circulating histone levels have been linked to cardiac injury and dysfunction in experimental models and patients with sepsis. The mechanisms underlying histone-induced cardiotoxicity and the functional consequences on left ventricle and right ventricle remain unclear. This study aims to examine dose-dependent effects of circulating histones on left ventricle and right ventricle function at clinically relevant concentrations. DESIGN: Prospective laboratory study with in vitro and in vivo investigations. SETTING: University research laboratory. SUBJECTS: Twelve-week old male C57BL/6N mice. INTERVENTIONS: Cultured cardiomyocytes were incubated with clinically relevant histone concentrations, and a histone infusion mouse model was also used with hemodynamic changes characterized by echocardiography and left ventricle/right ventricle catheter-derived variables. Circulating histones and cardiac troponin levels were obtained from serial blood samples. MEASUREMENTS AND MAIN RESULTS: IV histone infusion caused time-dependent cardiac troponin elevation to indicate cardiac injury. At moderate sublethal histone doses (30 mg/kg), left ventricular contractile dysfunction was the prominent abnormality with reduced ejection fraction and prolonged relaxation time. At high doses (≥ 60 mg/kg), pulmonary vascular obstruction induced right ventricular pressure increase and dilatation, but left ventricular end-diastolic volume improved because of reduced blood return from the lungs. Mechanistically, histones induced profound calcium influx and overload in cultured cardiomyocytes with dose-dependent detrimental effects on intracellular calcium transient amplitude, contractility, and rhythm, suggesting that histones directly affect cardiomyocyte function adversely. However, increasing histone-induced neutrophil congestion, neutrophil extracellular trap formation, and thrombosis in the pulmonary microvasculature culminated in right ventricular dysfunction. Antihistone antibody treatment abrogated histone cardiotoxicity. CONCLUSIONS: Circulating histones significantly compromise left ventricular and right ventricular function through different mechanisms that are dependent on histone concentrations. This provides a translational basis to explain and target the spectral manifestations of cardiac dysfunction in critical illness.


Assuntos
Histonas/farmacologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Direita/fisiopatologia , Animais , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Ecocardiografia , Hemodinâmica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Neutrófilos/metabolismo , Estudos Prospectivos , Troponina T/biossíntese
15.
J Biol Chem ; 289(35): 24275-88, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25035424

RESUMO

The Hippo signaling pathway has recently moved to center stage in cardiac research because of its key role in cardiomyocyte proliferation and regeneration of the embryonic and newborn heart. However, its role in the adult heart is incompletely understood. We investigate here the role of mammalian Ste20-like kinase 2 (Mst2), one of the central regulators of this pathway. Mst2(-/-) mice showed no alteration in cardiomyocyte proliferation. However, Mst2(-/-) mice exhibited a significant reduction of hypertrophy and fibrosis in response to pressure overload. Consistently, overexpression of MST2 in neonatal rat cardiomyocytes significantly enhanced phenylephrine-induced cellular hypertrophy. Mechanistically, Mst2 positively modulated the prohypertrophic Raf1-ERK1/2 pathway. However, activation of the downstream effectors of the Hippo pathway (Yes-associated protein) was not affected by Mst2 ablation. An initial genetic study in mitral valve prolapse patients revealed an association between a polymorphism in the human MST2 gene and adverse cardiac remodeling. These results reveal a novel role of Mst2 in stress-dependent cardiac hypertrophy and remodeling in the adult mouse and likely human heart.


Assuntos
Cardiomegalia/fisiopatologia , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico , Animais , Apoptose , Cardiomegalia/enzimologia , Cardiomegalia/patologia , Proliferação de Células , Humanos , Marcação In Situ das Extremidades Cortadas , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenilefrina/efeitos adversos , Proteínas Proto-Oncogênicas c-raf/metabolismo , Serina-Treonina Quinase 3
16.
Biochem Biophys Res Commun ; 467(1): 152-6, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392310

RESUMO

The physiological importance of the intestinal plasma membrane calcium pump, isoform 1, (Pmca1, Atp2b1), in calcium absorption and homeostasis has not been previously demonstrated in vivo. Since global germ-line deletion of the Pmca1 in mice is associated with embryonic lethality, we selectively deleted the Pmca1 in intestinal absorptive cells. Mice with loxP sites flanking exon 2 of the Pmca1 gene (Pmca1(fl/fl)) were crossed with mice expressing Cre recombinase in the intestine under control of the villin promoter to give mice in which the Pmca1 had been deleted in the intestine (Pmca1(EKO) mice). Pmca1(EKO) mice were born at a reduced frequency and were small at the time of birth when compared to wild-type (Wt) littermates. At two months of age, Pmca1(EKO) mice fed a 0.81% calcium, 0.34% phosphorus, normal vitamin D diet had reduced whole body bone mineral density (P < 0.037), and reduced femoral bone mineral density (P < 0.015). There was a trend towards lower serum calcium and higher serum parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) concentrations in Pmca1(EKO) mice compared to Wt mice but the changes were not statistically significant. The urinary phosphorus/creatinine ratio was increased in Pmca1(EKO) mice (P < 0.004). Following the administration of 200 ng of 1α,25(OH)2D3 intraperitoneally to Wt mice, active intestinal calcium transport increased ∼2-fold, whereas Pmca1(EKO) mice administered an equal amount of 1α,25(OH)2D3 failed to show an increase in active calcium transport. Deletion of the Pmca1 in the intestine is associated with reduced growth and bone mineralization, and a failure to up-regulate calcium absorption in response to 1α,25(OH)2D3.


Assuntos
Densidade Óssea/fisiologia , Calcitriol/farmacologia , Mucosa Intestinal/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/deficiência , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/genética , Conservadores da Densidade Óssea/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/genética , Calcificação Fisiológica/fisiologia , Feminino , Técnicas de Inativação de Genes/métodos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/genética , Absorção Intestinal/fisiologia , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética
17.
Arterioscler Thromb Vasc Biol ; 34(10): 2310-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25147342

RESUMO

OBJECTIVE: Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. APPROACH AND RESULTS: Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. CONCLUSIONS: Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis.


Assuntos
Indutores da Angiogênese/farmacologia , Calcineurina/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Células Endoteliais/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Proteínas de Ligação ao Cálcio , ATPases Transportadoras de Cálcio/deficiência , ATPases Transportadoras de Cálcio/genética , Movimento Celular , Proliferação de Células , Ciclo-Oxigenase 2/metabolismo , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células HEK293 , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isquemia/enzimologia , Isquemia/fisiopatologia , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção
18.
J Mol Cell Cardiol ; 72: 104-16, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24631771

RESUMO

Mitogen-activated protein kinases (MAPKs) are involved in the regulation of cardiac hypertrophy and myocyte survival. Extracellular signal regulated protein kinase 1 and 2 (ERK1/2) are key components in the MAPK signaling pathways. Dysfunction of ERK1/2 in congenital heart diseases (Noonan syndrome and LEOPARD syndrome) leads to cardiac hypertrophy. ERK2 contributes 70% of protein content to total ERK1/2 content in myocardium; however, the specific role of ERK2 in regulating cardiac hypertrophy is yet to be further defined. To investigate the specific role of ERK2 played in the cardiomyocytes, we generated and examined mice with cardiomyocyte-specific deletion of the erk2 gene (ERK2(cko) mice). Following short-term pathological hypertrophic stresses, the mutant mice showed attenuated hypertrophic remodeling characterized by a blunted increase in the cross-sectional area of individual myocytes, downregulation of hypertrophic foetal gene markers (ANP and BNP), and less interstitial fibrosis. However, increased cardiomyocyte apoptosis was observed. Upon prolonged stimulation, ERK2(cko) mice developed deterioration in cardiac function. However, absence of ERK2 did not affect physiological hypertrophy induced by 4weeks of swimming exercise. These results revealed an essential role for ERK2 in cardiomyocytes in the development of pathological hypertrophic remodeling and resistance to cell death.


Assuntos
Cardiomegalia/fisiopatologia , Proteína Quinase 1 Ativada por Mitógeno/deficiência , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Animais , Apoptose , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Fibrose , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Cultura Primária de Células , Estresse Fisiológico , Natação
19.
Sci Rep ; 14(1): 14041, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890395

RESUMO

The sinus node (SN) serves as the primary pacemaker of the heart and is the first component of the cardiac conduction system. Due to its anatomical properties and sample scarcity, the cellular composition of the human SN has been historically challenging to study. Here, we employed a novel deep learning deconvolution method, namely Bulk2space, to characterise the cellular heterogeneity of the human SN using existing single-cell datasets of non-human species. As a proof of principle, we used Bulk2Space to profile the cells of the bulk human right atrium using publicly available mouse scRNA-Seq data as a reference. 18 human cell populations were identified, with cardiac myocytes being the most abundant. Each identified cell population correlated to its published experimental counterpart. Subsequently, we applied the deconvolution to the bulk transcriptome of the human SN and identified 11 cell populations, including a population of pacemaker cardiomyocytes expressing pacemaking ion channels (HCN1, HCN4, CACNA1D) and transcription factors (SHOX2 and TBX3). The connective tissue of the SN was characterised by adipocyte and fibroblast populations, as well as key immune cells. Our work unravelled the unique single cell composition of the human SN by leveraging the power of a novel machine learning method.


Assuntos
Miócitos Cardíacos , Análise de Célula Única , Nó Sinoatrial , Humanos , Nó Sinoatrial/citologia , Nó Sinoatrial/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Análise de Célula Única/métodos , Camundongos , Animais , Inteligência Artificial , Transcriptoma , Átrios do Coração/metabolismo , Átrios do Coração/citologia , Aprendizado Profundo
20.
J Mol Cell Cardiol Plus ; 8: 100069, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38933087

RESUMO

Heart failure remains one of the largest clinical burdens globally, with little to no improvement in the development of disease-eradicating therapeutics. Integrin targeting has been used in the treatment of ocular disease and cancer, but little is known about its utility in the treatment of heart failure. Here we sought to determine whether the second generation orally available, αvß3-specific RGD-mimetic, 29P , was cardioprotective. Male mice were subjected to transverse aortic constriction (TAC) and treated with 50 µg/kg 29P or volume-matched saline as Vehicle control. At 3 weeks post-TAC, echocardiography showed that 29P treatment significantly restored cardiac function and structure indicating the protective effect of 29P treatment in this model of heart failure. Importantly, 29P treatment improved cardiac function giving improved fractional shortening, ejection fraction, heart weight and lung weight to tibia length fractions, together with partial restoration of Ace and Mme levels, as markers of the TAC insult. At a tissue level, 29P reduced cardiomyocyte hypertrophy and interstitial fibrosis, both of which are major clinical features of heart failure. RNA sequencing identified that, mechanistically, this occurred with concomitant alterations to genes involved molecular pathways associated with these processes such as metabolism, hypertrophy and basement membrane formation. Overall, targeting αvß3 with 29P provides a novel strategy to attenuate pressure-overload induced cardiac hypertrophy and fibrosis, providing a possible new approach to heart failure treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA