RESUMO
In this study, a recombinant chimeric protein (RCP), which was composed of specific CD4+ and CD8+ T-cell epitopes to murine and human haplotypes, was evaluated as an immunogen against Leishmania infantum infection in a murine model. BALB/c mice received saline were immunized with saponin or with RCP with or without an adjuvant. The results showed that RCP/saponin-vaccinated mice presented significantly higher levels of antileishmanial IFN-γ, IL-12 and GM-CSF before and after challenge, which were associated with the reduction of IL-4 and IL-10 mediated responses. These animals showed significant reductions in the parasite burden in all evaluated organs, when both limiting dilution and quantitative real-time PCR techniques were used. In addition, the protected animals presented higher levels of parasite-specific nitrite, as well as the presence of anti-Leishmania IgG2a isotype antibodies. In conclusion, the RCP/saponin vaccine could be considered as a prophylactic alternative to prevent against VL.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Leishmania infantum , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/prevenção & controle , Proteínas Recombinantes de Fusão/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Imunogenicidade da Vacina , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-4/metabolismo , Leishmania infantum/imunologia , Vacinas contra Leishmaniose/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/genética , Saponinas/imunologia , Vacinas Sintéticas/imunologiaRESUMO
Despite recent advances, current antidepressants have considerable limitations: late onset of action and the high profile of refractoriness. Biomedical research with natural products has gained growing interest in the last years, and had provide useful candidates for new antidepressants. Riparins are a group of natural alkamides obtained from Aniba riparia, which had marked neuroactive effects, mainly as antidepressant and antinociceptive agents. We made modifications of the basic structure of riparins, originating a synthetic alkamide, also known as riparin IV (RipIV). RipIV demonstrated a superior analgesic effect than its congeners and a marked antidepressant-like effect. However, the basic mechanism for the central effects of RipIV remains unknown. Here, we aimed to investigate the participation of monoaminergic neurotransmission targets in the antidepressant-like effects of RipIV. To do this, we applied a combined approach of experimental (classical pharmacology and neurochemistry) and computer-aided techniques. Our results demonstrated that RipIV presented antidepressant- and anxiolytic-like effects without modifying locomotion and motor coordination of mice. Also, RipIV increased brain monoamines and their metabolite levels. At the higher dose (100â¯mg/kg), RipIV increased serotonin concentrations in all studied brain areas, while at the lower one (50â¯mg/kg), it increased mainly dopamine and noradrenaline levels. When tested with selective receptor antagonists, RipIV antidepressant effect showed dependence of the activation of multiple targets, including D1 and D2 dopamine receptors, 5-HT2A/2, 5-HT3 receptors and α2 adrenergic receptors. Molecular docking demonstrated favorable binding conformation and affinity of RipIV to monoamine oxidase B (MAO-B), serotonin transporter (SERT), α1 receptor, D2 receptor, dopamine transporter (DAT) and at some extent GABA-A receptor. RipIV also presented a computationally predicted favorable pharmacokinetic profile. Therefore, this study demonstrated the involvement of monoaminergic targets in the mechanism of RipIV antidepressant-like action, and provide evidence of it as a promising new antidepressant.