Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2208317119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914137

RESUMO

The proper balance of synthesis, folding, modification, and degradation of proteins, also known as protein homeostasis, is vital to cellular health and function. The unfolded protein response (UPR) is activated when the mechanisms maintaining protein homeostasis in the endoplasmic reticulum become overwhelmed. However, prolonged or strong UPR responses can result in elevated inflammation and cellular damage. Previously, we discovered that the enzyme filamentation induced by cyclic-AMP (Fic) can modulate the UPR response via posttranslational modification of binding immunoglobulin protein (BiP) by AMPylation during homeostasis and deAMPylation during stress. Loss of fic in Drosophila leads to vision defects and altered UPR activation in the fly eye. To investigate the importance of Fic-mediated AMPylation in a mammalian system, we generated a conditional null allele of Fic in mice and characterized the effect of Fic loss on the exocrine pancreas. Compared to controls, Fic-/- mice exhibit elevated serum markers for pancreatic dysfunction and display enhanced UPR signaling in the exocrine pancreas in response to physiological and pharmacological stress. In addition, both fic-/- flies and Fic-/- mice show reduced capacity to recover from damage by stress that triggers the UPR. These findings show that Fic-mediated AMPylation acts as a molecular rheostat that is required to temper the UPR response in the mammalian pancreas during physiological stress. Based on these findings, we propose that repeated physiological stress in differentiated tissues requires this rheostat for tissue resilience and continued function over the lifetime of an animal.


Assuntos
AMP Cíclico , Proteínas de Drosophila , Drosophila melanogaster , Estresse do Retículo Endoplasmático , Nucleotidiltransferases , Estresse Fisiológico , Resposta a Proteínas não Dobradas , Animais , Camundongos , Alelos , AMP Cíclico/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Nucleotidiltransferases/deficiência , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/enzimologia , Pâncreas/metabolismo , Pâncreas/fisiopatologia , Estresse Fisiológico/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
2.
Chem Rev ; 118(3): 1199-1215, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28819965

RESUMO

Posttranslational modifications are covalent changes made to proteins that typically alter the function or location of the protein. AMPylation is an emerging posttranslational modification that involves the addition of adenosine monophosphate (AMP) to a protein. Like other, more well-studied posttranslational modifications, AMPylation is predicted to regulate the activity of the modified target proteins. However, the scope of this modification both in bacteria and in eukaryotes remains to be fully determined. In this review, we provide an up to date overview of the known AMPylating enzymes, the regulation of these enzymes, and the effect of this modification on target proteins.


Assuntos
Monofosfato de Adenosina/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas/metabolismo , Animais , Bactérias/metabolismo , Bactérias/patogenicidade , Domínio Catalítico , Nucleotidiltransferases/química , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional
3.
J Biol Chem ; 292(51): 21193-21204, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29089387

RESUMO

Protein chaperones play a critical role in proteostasis. The activity of the major endoplasmic reticulum chaperone BiP (GRP78) is regulated by Fic-mediated AMPylation during resting states. By contrast, during times of stress, BiP is deAMPylated. Here, we show that excessive AMPylation by a constitutively active FicE247G mutant is lethal in Drosophila This lethality is cell-autonomous, as directed expression of the mutant FicE247G to the fly eye does not kill the fly but rather results in a rough and reduced eye. Lethality and eye phenotypes are rescued by the deAMPylation activity of wild-type Fic. Consistent with Fic acting as a deAMPylation enzyme, its activity was both time- and concentration-dependent. Furthermore, Fic deAMPylation activity was sufficient to suppress the AMPylation activity mediated by the constitutively active FicE247G mutant in Drosophila S2 lysates. Further, we show that the dual enzymatic activity of Fic is, in part, regulated by Fic dimerization, as loss of this dimerization increases AMPylation and reduces deAMPylation of BiP.


Assuntos
Monofosfato de Adenosina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico/metabolismo , Nucleotidiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Linhagem Celular , Dimerização , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Anormalidades do Olho/veterinária , Feminino , Homozigoto , Cinética , Masculino , Mutação , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Especificidade de Órgãos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análise de Sobrevida , Mutações Sintéticas Letais
5.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328056

RESUMO

During homeostasis, the endoplasmic reticulum (ER) maintains productive transmembrane and secretory protein folding that is vital for proper cellular function. The ER-resident HSP70 chaperone, BiP, plays a pivotal role in sensing ER stress to activate the unfolded protein response (UPR). BiP function is regulated by the bifunctional enzyme FicD that mediates AMPylation and deAMPylation of BiP in response to changes in ER stress. AMPylated BiP acts as a molecular rheostat to regulate UPR signaling, yet little is known about the molecular consequences of FicD loss. In this study, we investigate the role of FicD in mouse embryonic fibroblast (MEF) response to pharmacologically and metabolically induced ER stress. We find differential BiP AMPylation signatures when comparing robust chemical ER stress inducers to physiological glucose starvation stress and recovery. Wildtype MEFs respond to pharmacological ER stress by downregulating BiP AMPylation. Conversely, BiP AMPylation in wildtype MEFs increases upon metabolic stress induced by glucose starvation. Deletion of FicD results in widespread gene expression changes under baseline growth conditions. In addition, FicD null MEFs exhibit dampened UPR signaling, altered cell stress recovery response, and unconstrained protein secretion. Taken together, our findings indicate that FicD is important for tampering UPR signaling, stress recovery, and the maintenance of secretory protein homeostasis. Significance Statement: The chaperone BiP plays a key quality control role in the endoplasmic reticulum, the cellular location for the production, folding, and transport of secreted proteins. The enzyme FicD regulates BiP's activity through AMPylation and deAMPylation. Our study unveils the importance of FicD in regulating BiP and the unfolded protein response (UPR) during stress. We identify distinct BiP AMPylation signatures for different stressors, highlighting FicD's nuanced control. Deletion of FicD causes widespread gene expression changes, disrupts UPR signaling, alters stress recovery, and perturbs protein secretion in cells. These observations underscore the pivotal contribution of FicD for preserving secretory protein homeostasis. Our findings deepen the understanding of FicD's role in maintaining cellular resilience and open avenues for therapeutic strategies targeting UPR-associated diseases.

6.
Biochimie ; 225: 114-124, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740171

RESUMO

The unfolded protein response (UPR) is a cellular stress response that is activated when misfolded proteins accumulate in the endoplasmic reticulum (ER). Regulation of the UPR response must be adapted to the needs of the cell as prolonged UPR responses can result in disrupted cellular function and tissue damage. Previously, we discovered that the enzyme FicD (also known as Fic or HYPE) through its AMPylation and deAMPylation activity can modulate the UPR response via post-translational modification of BiP. FicD AMPylates BiP during homeostasis and deAMPylates BiP during stress. We hypothesized that FicD regulation of the UPR will play a role in mitigating the deleterious effects of UPR activation in tissues with frequent physiological stress. Here, we explore the role of FicD in the murine liver. As seen in our pancreatic studies, livers lacking FicD exhibit enhanced UPR signaling in response to short term physiologic fasting and feeding stress. However, in contrast to studies on the pancreas, livers, as a more regenerative tissue, remained remarkably resilient in the absence of FicD. The livers of FicD-/- did not show marked changes in UPR signaling or damage after either chronic high fat diet (HFD) feeding or acute pathological UPR induction. Intriguingly, FicD-/- mice showed changes in UPR induction and weight loss patterns following repeated pathological UPR induction. These findings indicate that FicD regulates UPR responses during mild physiological stress and in adaptation to repeated stresses, but there are tissue specific differences in the requirement for FicD regulation.

7.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659954

RESUMO

The unfolded protein response (UPR) is a cellular stress response that is activated when misfolded proteins accumulate in the endoplasmic reticulum (ER). The UPR elicits a signaling cascade that results in an upregulation of protein folding machinery and cell survival signals. However, prolonged UPR responses can result in elevated cellular inflammation, damage, and even cell death. Thus, regulation of the UPR response must be tuned to the needs of the cell, sensitive enough to respond to the stress but pliable enough to be stopped after the crisis has passed. Previously, we discovered that the bi-functional enzyme FicD can modulate the UPR response via post-translational modification of BiP. FicD AMPylates BiP during homeostasis and deAMPylates BiP during stress. We found this activity is important for the physiological regulation of the exocrine pancreas. Here, we explore the role of FicD in the murine liver. Like our previous studies, livers lacking FicD exhibit enhanced UPR signaling in response to short term physiologic fasting and feeding stress. However, the livers of FicD -/- did not show marked changes in UPR signaling or damage after either chronic high fat diet (HFD) feeding or acute pathological UPR induction. Intriguingly, FicD -/- mice showed changes in UPR induction and weight loss patterns following repeated pathological UPR induction. These findings show that FicD regulates UPR responses during mild physiological stress and may play a role in maintaining resiliency of tissue through adaptation to repeated ER stress.

8.
mSystems ; 6(1)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563785

RESUMO

Diverse bacterial pathogens employ effector delivery systems to disrupt vital cellular processes in the host (N. M. Alto and K. Orth, Cold Spring Harbor Perspect Biol 4:a006114, 2012, https://doi.org/10.1101/cshperspect.a006114). The type III secretion system 1 of the marine pathogen Vibrio parahaemolyticus utilizes the sequential action of four effectors to induce a rapid, proinflammatory cell death uniquely characterized by a prosurvival host transcriptional response (D. L. Burdette, M. L. Yarbrough, A Orvedahl, C. J. Gilpin, and K. Orth, Proc Natl Acad Sci USA 105:12497-12502, 2008, https://doi.org/10.1073/pnas.0802773105; N. J. De Nisco, M. Kanchwala, P. Li, J. Fernandez, C. Xing, and K. Orth, Sci Signal 10:eaa14501, 2017, https://doi.org/10.1126/scisignal.aal4501). Herein, we show that this prosurvival response is caused by the action of the channel-forming effector VopQ that targets the host V-ATPase, resulting in lysosomal deacidification and inhibition of lysosome-autophagosome fusion. Recent structural studies have shown how VopQ interacts with the V-ATPase and, while in the ER, a V-ATPase assembly intermediate can interact with VopQ, causing a disruption in membrane integrity. Additionally, we observed that VopQ-mediated disruption of the V-ATPase activates the IRE1 branch of the unfolded protein response (UPR), resulting in an IRE1-dependent activation of ERK1/2 MAPK signaling. We also find that this early VopQ-dependent induction of ERK1/2 phosphorylation is terminated by the VopS-mediated inhibitory AMPylation of Rho GTPase signaling. Since VopS dampens VopQ-induced IRE1-dependent ERK1/2 activation, we propose that IRE1 activates ERK1/2 phosphorylation at or above the level of Rho GTPases. This study illustrates how temporally induced effectors can work as in tandem as agonist/antagonist to manipulate host signaling and reveals new connections between V-ATPase function, UPR, and MAPK signaling.IMPORTANCE Vibrio parahaemolyticus is a seafood-borne pathogen that encodes two type 3 secretion systems (T3SS). The first system, T3SS1, is thought to be maintained in all strains of V. parahaemolyticus to maintain survival in the environment, whereas the second system, T3SS2, is linked to clinical isolates and disease in humans. Here, we found that first system targets evolutionarily conserved signaling systems to manipulate host cells, eventually causing a rapid, orchestrated cells death within 3 h. We have found that the T3SS1 injects virulence factors that temporally manipulate host signaling. Within the first hour of infection, the effector VopQ acts first by activating host survival signals while diminishing the host cell apoptotic machinery. Less than an hour later, another effector, VopS, reverses activation and inhibition of these signaling systems, ultimately leading to death of the host cell. This work provides example of how pathogens have evolved to manipulate the interplay between T3SS effectors to regulate host signaling pathways.

9.
Nat Struct Mol Biol ; 27(6): 589-597, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32424347

RESUMO

The Vibrio parahaemolyticus T3SS effector VopQ targets host-cell V-ATPase, resulting in blockage of autophagic flux and neutralization of acidic compartments. Here, we report the cryo-EM structure of VopQ bound to the Vo subcomplex of the V-ATPase. VopQ inserts into membranes and forms an unconventional pore while binding directly to subunit c of the V-ATPase membrane-embedded subcomplex Vo. We show that VopQ arrests yeast growth in vivo by targeting the immature Vo subcomplex in the endoplasmic reticulum (ER), thus providing insight into the observation that VopQ kills cells in the absence of a functional V-ATPase. VopQ is a bacterial effector that has been discovered to inhibit a host-membrane megadalton complex by coincidentally binding its target, inserting into a membrane and disrupting membrane potential. Collectively, our results reveal a mechanism by which bacterial effectors modulate host cell biology and provide an invaluable tool for future studies on V-ATPase-mediated membrane fusion and autophagy.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vibrio parahaemolyticus/metabolismo , Proteínas de Bactérias/genética , Membrana Celular , Microscopia Crioeletrônica , Interações Hospedeiro-Patógeno , Modelos Moleculares , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , ATPases Vacuolares Próton-Translocadoras/genética
10.
Elife ; 72018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30015618

RESUMO

In response to environmental, developmental, and pathological stressors, cells engage homeostatic pathways to maintain their function. Among these pathways, the Unfolded Protein Response protects cells from the accumulation of misfolded proteins in the ER. Depending on ER stress levels, the ER-resident Fic protein catalyzes AMPylation or de-AMPylation of BiP, the major ER chaperone and regulator of the Unfolded Protein Response. This work elucidates the importance of the reversible AMPylation of BiP in maintaining the Drosophila visual system in response to stress. After 72 hr of constant light, photoreceptors of fic-null and AMPylation-resistant BiPT366A mutants, but not wild-type flies, display loss of synaptic function, disintegration of rhabdomeres, and excessive activation of ER stress reporters. Strikingly, this phenotype is reversible: photoreceptors regain their structure and function within 72 hr once returned to a standard light:dark cycle. These findings show that Fic-mediated AMPylation of BiP is required for neurons to adapt to transient stress demands.


Assuntos
Adaptação Fisiológica , Monofosfato de Adenosina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Luz , Nucleotidiltransferases/metabolismo , Células Fotorreceptoras/fisiologia , Processamento de Proteína Pós-Traducional , Animais , Drosophila , Células Fotorreceptoras/efeitos da radiação
11.
Mol Biol Cell ; 26(15): 2833-44, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26041935

RESUMO

The nuclear envelope (NE) and endoplasmic reticulum (ER) are components of the same contiguous membrane system and yet have distinct cellular functions. Mounting evidence suggests roles for some ER proteins in the NE for proper nuclear pore complex (NPC) structure and function. In this study, we identify a NE role in Saccharomyces cerevisiae for Lnp1 and Sey1, proteins required for proper cortical ER formation. Both lnp1Δ and sey1Δ mutants exhibit synthetic genetic interactions with mutants in genes encoding key NPC structural components. Both Lnp1 and Sey1 physically associate with other ER components that have established NPC roles, including Rtn1, Yop1, Pom33, and Per33. Of interest, lnp1Δ rtn1Δ mutants but not rtn1Δ sey1Δ mutants exhibit defects in NPC distribution. Furthermore, the essential NPC assembly factor Ndc1 has altered interactions in the absence of Sey1. Lnp1 dimerizes in vitro via its C-terminal zinc finger motif, a property that is required for proper ER structure but not NPC integrity. These findings suggest that Lnp1's role in NPC integrity is separable from functions in the ER and is linked to Ndc1 and Rtn1 interactions.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Membrana Nuclear/metabolismo
12.
Curr Biol ; 22(19): R846-8, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23058806

RESUMO

In fungi, nuclear pore complexes are free to move through the nuclear envelope; however, little is known about how movement is regulated. New evidence reveals roles for molecular motors and potential impacts on genomic organization.


Assuntos
Cromossomos/ultraestrutura , Fungos/fisiologia , Poro Nuclear/metabolismo
13.
Genetics ; 192(2): 441-55, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22798490

RESUMO

The nuclear envelope in Saccharomyces cerevisiae harbors two essential macromolecular protein assemblies: the nuclear pore complexes (NPCs) that enable nucleocytoplasmic transport, and the spindle pole bodies (SPBs) that mediate chromosome segregation. Previously, based on metazoan and budding yeast studies, we reported that reticulons and Yop1/DP1 play a role in the early steps of de novo NPC assembly. Here, we examined if Rtn1 and Yop1 are required for SPB function in S. cerevisiae. Electron microscopy of rtn1Δ yop1Δ cells revealed lobular abnormalities in SPB structure. Using an assay that monitors lateral expansion of the SPB central layer, we found that rtn1Δ yop1Δ SPBs had decreased connections to the NE compared to wild type, suggesting that SPBs are less stable in the NE. Furthermore, large budded rtn1Δ yop1Δ cells exhibited a high incidence of short mitotic spindles, which were frequently misoriented with respect to the mother-daughter axis. This correlated with cytoplasmic microtubule defects. We found that overexpression of the SPB insertion factors NDC1, MPS2, or BBP1 rescued the SPB defects observed in rtn1Δ yop1Δ cells. However, only overexpression of NDC1, which is also required for NPC biogenesis, rescued both the SPB and NPC associated defects. Rtn1 and Yop1 also physically interacted with Ndc1 and other NPC membrane proteins. We propose that NPC and SPB biogenesis are altered in cells lacking Rtn1 and Yop1 due to competition between these complexes for Ndc1, an essential common component of both NPCs and SPBs.


Assuntos
Proteínas de Membrana Transportadoras/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae , Fuso Acromático , Transporte Ativo do Núcleo Celular/genética , Centríolos/genética , Centríolos/ultraestrutura , Segregação de Cromossomos/genética , Proteínas de Membrana Transportadoras/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Poro Nuclear/genética , Poro Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA