Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38400456

RESUMO

Distributed optical fibre sensing (DOFS)-based strain measurement systems are now routinely deployed across infrastructure health monitoring applications. However, there are still practical performance and measurement issues associated with the fibre's attachment method, particularly with thermoplastic pipeline materials (e.g., high-density polyethylene, HDPE) and adhesive affixment methods. In this paper, we introduce a new optical fibre installation method that utilises a hot-weld encapsulation approach that fully embeds the fibre onto the pipeline's plastic surface. We describe the development, application and benefits of the new embedment approach (as compared to adhesive methods) and illustrate its practical performance via a full-scale, real-world, dynamic loading trial undertaken on a 1.8 m diameter, 6.4 m long stormwater pipeline structure constructed from composite spiral-wound, steel-reinforced, HDPE pipe. The optical frequency domain reflectometry (OFDR)-based strain results show how the new method improves strain transference and dynamic measurement performance and how the data can be easily interpreted, in a practical context, without the need for complex strain transfer functions. Through the different performance tests, based on UK rail-road network transport loading conditions, we also show how centimetre- to metre-scale strain variations can be clearly resolved at the frequencies and levels consistent with transport- and construction-based, buried infrastructure loading scenarios.

2.
Biotechnol Bioeng ; 116(12): 3421-3432, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31429922

RESUMO

The capability of electrical stimulation (ES) in promoting bone regeneration has already been addressed in clinical studies. However, its mechanism is still being investigated and discussed. This study aims to investigate the responses of macrophages (J774A.1) and preosteoblasts (MC3T3-E1) to ES and the faradic by-products from ES. It is found that pH of the culture media was not significantly changed, whereas the average hydrogen peroxide concentration was increased by 3.6 and 5.4 µM after 1 and 2 hr of ES, respectively. The upregulation of Bmp2 and Spp1 messenger RNAs was observed after 3 days of stimulation, which is consistent among two cell types. It is also found that Spp1 expression of macrophages was partially enhanced by faradic by-products. Osteogenic differentiation of preosteoblasts was not observed during the early stage of ES as the level of Runx2 expression remains unchanged. However, cell proliferation was impaired by the excessive current density from the electrodes, and also faradic by-products in the case of macrophages. This study shows that macrophages could respond to ES and potentially contribute to the bone formation alongside preosteoblasts. The upregulation of Bmp2 and Spp1 expressions induced by ES could be one of the mechanisms behind the electrically stimulated osteogenesis.


Assuntos
Proteína Morfogenética Óssea 2/biossíntese , Regulação da Expressão Gênica , Macrófagos/metabolismo , Osteoblastos/metabolismo , Osteogênese , Osteopontina/biossíntese , Animais , Linhagem Celular , Técnicas de Cocultura , Estimulação Elétrica , Macrófagos/citologia , Camundongos , Osteoblastos/citologia
3.
Acta Biomater ; 139: 204-217, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34390847

RESUMO

Electrical stimulation of cells allows exogenous electric signals as stimuli to manipulate cell growth, preferential orientation and bone remodelling. In this study, commercially pure titanium discs were utilised in combination with a custom-built bioreactor to investigate the cellular responses of human mesenchymal stem cells via in-vitro functional assays. Finite element analysis revealed the homogeneous delivery of electric field in the bioreactor chamber with no detection of current density fluctuation in the proposed model. The custom-built bioreactor with capacitive stimulation delivery system features long-term stimulation with homogeneous electric field, biocompatible, sterilisable, scalable design and cost-effective in the manufacturing process. Using a continuous stimulation regime of 100 and 200 mV/mm on cp Ti discs, viability tests revealed up to an approximately 5-fold increase of cell proliferation rate as compared to non-stimulated controls. The human mesenchymal stem cells showed more elongated and differentiated morphology under this regime, with evidence of nuclear elongation and cytoskeletal orientation perpendicular to the direction of electric field. The continuous stimulation did not cause pH fluctuations and hydrogen peroxide production caused by Faradic reactions, signifying the suitability for long-term toxic free stimulation as opposed to the commonly used direct stimulation regime. An approximate of 4-fold increase in alkaline phosphatase production and approximately 9-fold increase of calcium deposition were observed on 200 mV/mm exposed samples relative to non-stimulated controls. It is worth noting that early stem cell differentiation and matrix production were observed under the said electric field even without the presence of chemical inductive growth factors. STATEMENT OF SIGNIFICANCE: This manuscript presents a study on combining pure titanium (primarily preferred as medical implant materials) and electrical stimulation in a purpose-built bioreactor with capacitive stimulation delivery system. A continuous capacitive stimulation regime on titanium disc has resulted in enhanced stem cell orientation, nuclei elongation, proliferation and differentiation as compared to non-stimulated controls. We believe that this manuscript creates a paradigm for future studies on the evolution of healthcare treatments in the area of targeted therapy on implantable and wearable medical devices through tailored innovative electrical stimulation approach, thereby influencing therapeutic conductive and electroactive biomaterials research prospects and development.


Assuntos
Osteogênese , Titânio , Diferenciação Celular , Estimulação Elétrica/métodos , Humanos , Células-Tronco , Titânio/farmacologia
4.
J Tissue Eng ; 12: 2041731420974147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643602

RESUMO

Electrical stimulation (ES) has potential to be an effective tool for bone injury treatment in clinics. However, the therapeutic mechanism associated with ES is still being discussed. This study aims to investigate the initial mechanism of action by characterising the physical and chemical changes in the extracellular environment during ES and correlate them with the responses of mesenchymal stem/stromal cells (MSCs). Computational modelling was used to estimate the electrical potentials relative to the cathode and the current density across the cell monolayer. We showed expression of phosphorylated ERK1/2, c-FOS, c-JUN, and SPP1 mRNAs, as well as the increased metabolic activities of MSCs at different time points. Moreover, the average of 2.5 µM of H2O2 and 34 µg/L of dissolved Pt were measured from the electrically stimulated media (ES media), which also corresponded with the increases in SPP1 mRNA expression and cell metabolic activities. The addition of sodium pyruvate to the ES media as an antioxidant did not alter the SPP1 mRNA expression, but eliminated an increase in cell metabolic activities induced by ES media treatment. These findings suggest that H2O2 was influencing cell metabolic activity, whereas SPP1 mRNA expression was regulated by other faradic by-products. This study reveals how different electrical stimulation regime alters cellular regenerative responses and the roles of faradic by-products, that might be used as a physical tool to guide and control cell behaviour.

5.
Water Res ; 161: 222-231, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31200219

RESUMO

Hyporheic zones are increasingly thought of as natural bioreactors, capable of transforming and attenuating groundwater pollutants present in diffuse baseflow. An underappreciated scenario in the understanding of contaminant fate in hyporheic zones is the interaction between point-source trichloroethene (TCE) plumes and ubiquitous, non-point source pollutants such as nitrate. This study aims to conceptualise critical biogeochemical gradients in the hyporheic zone which govern the export potential of these redox-sensitive pollutants from carbon-poor, oxic aquifers. Within the TCE plume discharge zone, discrete vertical profiling of the upper 100 cm of sediment pore water chemistry revealed an 80% increase in dissolved organic carbon (DOC) concentrations and 20-60 cm thick hypoxic zones (<2 mg O2 L-1) within which most reactive transport was observed. A 33% reduction of nitrate concentrations coincided with elevated pore water nitrous oxide concentrations as well as the appearance of manganese and the TCE metabolite cis-1,2-dichloroethene (cDCE). Elevated groundwater nitrate concentrations (>50 mg L-1) create a large stoichiometric demand for bioavailable DOC in discharging groundwater. With the benefit of a high-resolution grid of pore water samplers investigating the shallowest 30 cm of hypoxic groundwater flow paths, we identified DOC-rich hotspots associated with submerged vegetation (Ranunculus spp.), where low-energy metabolic processes such as mineral dissolution/reduction, methanogenesis and ammonification dominate. Using a chlorine index metric, we show that enhanced TCE to cDCE transformation takes place within these biogeochemical hotspots, highlighting their relevance for natural plume attenuation.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Etilenos , Nitratos
6.
J Contam Hydrol ; 94(1-2): 49-75, 2007 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17601633

RESUMO

Groundwater and sub-surface contamination by Light Non-Aqueous Phase Liquids (LNAPLs) is one of the industrial world's most pressing environmental issues and a thorough understanding of the hydrological, physical and bio-chemical properties of the sub-surface is key to determining the spatial and temporal development of any particular contamination event. Non-invasive geophysical techniques (such as electrical resistivity, electromagnetic conductivity, Ground-Penetrating Radar, etc.) have proved to be successful sub-surface investigation and characterisation tools with Ground-Penetrating Radar (GPR) being particularly popular. Recent studies have shown that the spatial/temporal variation in GPR signal attenuation can provide important information on the electrical properties of the sub-surface materials that, in turn, can be used to assess the physical and hydrological nature of the pore fluids and associated contaminants. Unfortunately, a high percentage of current LNAPL-related GPR studies focus on contaminant mapping only, with little emphasis being placed on characterising the hydrological properties (e.g., determining contaminant saturation index, etc.). By comparing laboratory-based, dielectric measurements of LNAPL contaminated materials with the GPR signal attenuation observed in both contaminated and 'clean' areas of an LNAPL contaminated site, new insights have been gained into the nature of contaminant distribution/saturation and the likely signal attenuation mechanisms. The results show that, despite some practical limitations of the analysis technique, meaningful hydrological interpretations can be obtained on the contaminant properties, saturation index and bio-degradation processes. A generalised attenuation/saturation model has been developed that describes the physical and attenuation enhancement characteristics of the contaminated areas and reveals that the most significant attenuation is related to smeared zone surrounding the seasonally changing water table interface. It is envisaged that the model will provide a basis for the interpretation of GPR data from analogous LNAPL contaminated sites and provide investigators with an appreciation of the merits and limitations of GPR-based, attenuation analysis techniques for hydrological applications.


Assuntos
Condutividade Elétrica , Monitoramento Ambiental/métodos , Resíduos Industriais , Compostos Orgânicos/análise , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Monitoramento Ambiental/instrumentação , Geografia , Compostos Orgânicos/toxicidade , Medição de Risco , Poluentes Químicos da Água/toxicidade
7.
J Forensic Sci ; 61(2): 309-321, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27404604

RESUMO

This ongoing monitoring study provides forensic search teams with systematic geophysical data over simulated clandestine graves for comparison to active cases. Simulated "wrapped," "naked," and "control" burials were created. Multiple geophysical surveys were collected over 6 years, here showing data from 4 to 6 years after burial. Electrical resistivity (twin electrode and ERI), multifrequency GPR, grave and background soil water were collected. Resistivity surveys revealed that the naked burial had low-resistivity anomalies up to year four but then difficult to image, whereas the wrapped burial had consistent large high-resistivity anomalies. GPR 110- to 900-MHz frequency surveys showed that the wrapped burial could be detected throughout, but the naked burial was either not detectable or poorly resolved. 225-MHz frequency GPR data were optimal. Soil water analyses showed decreasing (years 4 to 5) to background (year 6) conductivity values. Results suggest both resistivity and GPR surveying if burial style unknown, with winter to spring surveys optimal and increasingly important as time increases.

8.
J Forensic Sci ; 60(4): 1052-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26190264

RESUMO

In homicide investigations, it is critically important that postmortem interval and postburial interval (PBI) of buried victims are determined accurately. However, clandestine graves can be difficult to locate; and the detection rates for a variety of search methods (ranging from simple ground probing through to remote imaging and near-surface geophysics) can be very low. In this study, simulated graves of homicide victims were emplaced in three sites with contrasting soil types, bedrock, and depositional environments. The long-term monthly in situ monitoring of grave soil water revealed rapid increases in conductivity up to 2 years after burial, with the longest study evidencing declining values to background levels after 4.25 years. Results were corrected for site temperatures and rainfall to produce generic models of fluid conductivity as a function of time. The research suggests soilwater conductivity can give reliable PBI estimates for clandestine burials and therefore be used as a grave detection method.

9.
Forensic Sci Int ; 246: 31-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25460105

RESUMO

There are various techniques available for forensic search teams to employ to successfully detect a buried object. Near-surface geophysical search methods have been dominated by ground penetrating radar but recently other techniques, such as electrical resistivity, have become more common. This paper discusses magnetic susceptibility as a simple surface search tool illustrated by various research studies. These suggest magnetic susceptibility to be a relatively low cost, quick and effective tool, compared to other geophysical methods, to determine disturbed ground above buried objects and burnt surface remains in a variety of soil types. Further research should collect datasets over objects of known burial ages for comparison purposes and used in forensic search cases to validate the technique.

10.
Acta Biomater ; 10(6): 2341-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24556448

RESUMO

Developing stimulus-responsive biomaterials with easy-to-tailor properties is a highly desired goal of the tissue engineering community. A novel type of electroactive biomaterial, the conductive polymer, promises to become one such material. Conductive polymers are already used in fuel cells, computer displays and microsurgical tools, and are now finding applications in the field of biomaterials. These versatile polymers can be synthesised alone, as hydrogels, combined into composites or electrospun into microfibres. They can be created to be biocompatible and biodegradable. Their physical properties can easily be optimized for a specific application through binding biologically important molecules into the polymer using one of the many available methods for their functionalization. Their conductive nature allows cells or tissue cultured upon them to be stimulated, the polymers' own physical properties to be influenced post-synthesis and the drugs bound in them released, through the application of an electrical signal. It is thus little wonder that these polymers are becoming very important materials for biosensors, neural implants, drug delivery devices and tissue engineering scaffolds. Focusing mainly on polypyrrole, polyaniline and poly(3,4-ethylenedioxythiophene), we review conductive polymers from the perspective of tissue engineering. The basic properties of conductive polymers, their chemical and electrochemical synthesis, the phenomena underlying their conductivity and the ways to tailor their properties (functionalization, composites, etc.) are discussed.


Assuntos
Materiais Biocompatíveis , Polímeros , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA