RESUMO
The heat-shock response plays a key role in the immune defence against viruses across various organisms. Studies on model organisms have shown that inducing this response prior to viral exposure enhances host resistance to infections, while deficient responses make individuals more susceptible. Moreover, viruses rely on components of the heat-shock response for their own stability and viral infections improve thermal tolerance in plants, giving infected individuals an advantage in extreme conditions, which aids the virus in replication and transmission. Here, we examine the interaction between the nematode Caenorhabditis elegans and its natural pathogen the Orsay virus (OrV) under heat stress. We found that OrV infection leads to differential expression of heat-stress-related genes, and infected populations show increased resistance to heat-shock. This resistance correlates with increased expression of argonautes alg-1 and alg-2, which are crucial for survival after heat-shock and for OrV replication. Overall, our study suggests an environmental-dependent mutualistic relationship between the nematode and OrV, potentially expanding the animal's ecological niche and providing the virus with extra opportunities for replication and adaptation to extreme conditions.
Assuntos
Caenorhabditis elegans , Resposta ao Choque Térmico , Animais , Caenorhabditis elegans/virologia , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Interações Hospedeiro-PatógenoRESUMO
The conserved adapter protein Scribble (Scrib) plays essential roles in a variety of cellular processes, including polarity establishment, proliferation, and directed cell migration. While the mechanisms through which Scrib promotes epithelial polarity are beginning to be unraveled, its roles in other cellular processes including cell migration remain enigmatic. In C. elegans, the Scrib ortholog LET-413 is essential for apical-basal polarization and junction formation in embryonic epithelia. However, whether LET-413 is required for postembryonic development or plays a role in migratory events is not known. Here, we use inducible protein degradation to investigate the functioning of LET-413 in larval epithelia. We find that LET-413 is essential in the epidermal epithelium for growth, viability, and junction maintenance. In addition, we identify a novel role for LET-413 in the polarized outgrowth of the epidermal seam cells. These stem cell-like epithelial cells extend anterior and posterior directed apical protrusions in each larval stage to reconnect to their neighbors. We show that the role of LET-413 in seam cell outgrowth is likely mediated largely by the junctional component DLG-1 discs large, which we demonstrate is also essential for directed outgrowth of the seam cells. Our data uncover multiple essential functions for LET-413 in larval development and show that the polarized outgrowth of the epithelial seam cells is controlled by LET-413 Scribble and DLG-1 Discs large.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Células Epiteliais/metabolismo , Animais , Polaridade Celular/fisiologia , Epitélio/metabolismo , Junções Intercelulares/metabolismoRESUMO
Crumbs proteins are evolutionarily conserved transmembrane proteins with essential roles in promoting the formation of the apical domain in epithelial cells. The short intracellular tail of Crumbs proteins are known to interact with several proteins, including the scaffolding protein PALS1 (protein associated with LIN7, Stardust in Drosophila). PALS1 in turn binds to a second scaffolding protein PATJ (PALS1-associated tight junction protein) to form the core Crumbs/PALS1/PATJ complex. While essential roles in epithelial organization have been shown for Crumbs proteins in Drosophila and mammalian systems, the three Caenorhabditis elegans crumbs genes are dispensable for epithelial polarization and development. Here, we investigated the presence and function of PALS1 and PATJ orthologs in C. elegans. We identified MAGU-2 as the C. elegans ortholog of PALS1 and show that MAGU-2 interacts with all three Crumbs proteins and localizes to the apical membrane domain of intestinal epithelial cells in a Crumbs-dependent fashion. Similar to crumbs mutants, magu-2 deletion showed no epithelial polarity defects. We also identified MPZ-1 as a candidate ortholog of PATJ based on the physical interaction with MAGU-2 and sequence similarity with PATJ proteins. However, MPZ-1 is not broadly expressed in epithelial tissues and, therefore, not likely a core component of the C. elegans Crumbs complex. Finally, we show overexpression of the Crumbs proteins EAT-20 or CRB-3 can lead to apical membrane expansion in the intestine. Our results shed light on the composition of the C. elegans Crumbs complex and indicate that the role of Crumbs proteins in promoting apical domain formation is conserved.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Polaridade Celular/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/metabolismoRESUMO
The discovery of Orsay virus (OrV), the first virus infecting wild populations of Caenorhabditis elegans, has boosted studies of viral immunity pathways in this nematode. Considering the many advantages that C. elegans offers for fundamental research in host-pathogen interactions, this pathosystem has high potential to become a model system for experimental virus evolution studies. However, the evolutionary constraints - i.e, the balance between genetic variation, selection, drift and historical contingency- operating in this pathosystem have barely been explored. Here we describe for the first time an evolution experiment of two different OrV strains in C. elegans. Comparison of the two ancestral strains showed differences in infectivity and sequence, and highlighted the importance of consistently normalize viral inocula for meaningful comparisons among strains. After 10 serial passages of evolution, we report slight changes in infectivity and non-synonymous mutations fixed in the evolved viral populations. In addition, we observed numerous minor variants emerging in the viral population. These minor variants were not randomly distributed along the genome but concentrated in polymorphic genomic regions. Overall, our work established the grounds for future experimental virus evolution studies using Caenorhabditis nematodes.
Assuntos
Caenorhabditis elegans , Animais , Caenorhabditis elegans/virologia , Evolução Molecular , Mutação , Vírus de RNA/genética , Interações Hospedeiro-Patógeno/genética , Variação Genética , Genoma ViralRESUMO
Orsay virus (OrV) is the only known natural virus affecting Caenorhabditis elegans, with minimal impact on the animal's fitness due to its robust innate immune response. This study aimed to understand the interactions between C. elegans and OrV by tracking the infection's progression during larval development. Four distinct stages of infection were identified on the basis of viral load, with a peak in capsid-encoding RNA2 coinciding with the first signs of viral egression. Transcriptomic analysis revealed temporal changes in gene expression and functions induced by the infection. A specific set of up-regulated genes remained active throughout the infection, and genes correlated and anticorrelated with virus accumulation were identified. Responses to OrV mirrored reactions to other biotic stressors, distinguishing between virus-specific responses and broader immune responses. Moreover, mutants of early response genes and defense-related processes showed altered viral load progression, uncovering additional players in the antiviral defense response.
Assuntos
Caenorhabditis elegans , Interações Hospedeiro-Patógeno , Carga Viral , Animais , Caenorhabditis elegans/virologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , Nodaviridae/fisiologia , Perfilação da Expressão Gênica , Transcriptoma , Regulação da Expressão GênicaRESUMO
The establishment of an apical-basal axis of polarity is essential for the organization and functioning of epithelial cells. Polarization of epithelial cells is orchestrated by a network of conserved polarity regulators that establish opposing cortical domains through mutually antagonistic interactions and positive feedback loops. While our understanding is still far from complete, the molecular details behind these interactions continue to be worked out. Here, we highlight recent findings on the mechanisms that control the activity and localization of apical-basal polarity regulators, including oligomerization and higher-order complex formation, auto-inhibitory interactions, and electrostatic interactions with the plasma membrane.
Assuntos
Polaridade Celular/fisiologia , Células Epiteliais/metabolismo , AnimaisRESUMO
The cortical polarity regulators PAR-6, PKC-3, and PAR-3 are essential for the polarization of a broad variety of cell types in multicellular animals. In C. elegans, the roles of the PAR proteins in embryonic development have been extensively studied, yet little is known about their functions during larval development. Using inducible protein degradation, we show that PAR-6 and PKC-3, but not PAR-3, are essential for postembryonic development. PAR-6 and PKC-3 are required in the epidermal epithelium for animal growth, molting, and the proper pattern of seam-cell divisions. Finally, we uncovered a novel role for PAR-6 in organizing non-centrosomal microtubule arrays in the epidermis. PAR-6 was required for the localization of the microtubule organizer NOCA-1/Ninein, and defects in a noca-1 mutant are highly similar to those caused by epidermal PAR-6 depletion. As NOCA-1 physically interacts with PAR-6, we propose that PAR-6 promotes non-centrosomal microtubule organization through localization of NOCA-1/Ninein.