Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Brain ; 146(5): 1844-1858, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36314052

RESUMO

Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neurological disorders, affecting either axons from the motor and/or sensory neurons or Schwann cells of the peripheral nervous system (PNS) and caused by more than 100 genes. We previously identified mutations in FGD4 as responsible for CMT4H, an autosomal recessive demyelinating form of CMT disease. FGD4 encodes FRABIN, a GDP/GTP nucleotide exchange factor, particularly for the small GTPase Cdc42. Remarkably, nerves from patients with CMT4H display excessive redundant myelin figures called outfoldings that arise from focal hypermyelination, suggesting that FRABIN could play a role in the control of PNS myelination. To gain insights into the role of FGD4/FRABIN in Schwann cell myelination, we generated a knockout mouse model (Fgd4SC-/-), with conditional ablation of Fgd4 in Schwann cells. We show that the specific deletion of FRABIN in Schwann cells leads to aberrant myelination in vitro, in dorsal root ganglia neuron/Schwann cell co-cultures, as well as in vivo, in distal sciatic nerves from Fgd4SC-/- mice. We observed that those myelination defects are related to an upregulation of some interactors of the NRG1 type III/ERBB2/3 signalling pathway, which is known to ensure a proper level of myelination in the PNS. Based on a yeast two-hybrid screen, we identified SNX3 as a new partner of FRABIN, which is involved in the regulation of endocytic trafficking. Interestingly, we showed that the loss of FRABIN impairs endocytic trafficking, which may contribute to the defective NRG1 type III/ERBB2/3 signalling and myelination. Using RNA-Seq, in vitro, we identified new potential effectors of the deregulated pathways, such as ERBIN, RAB11FIP2 and MAF, thereby providing cues to understand how FRABIN contributes to proper ERBB2 trafficking or even myelin membrane addition through cholesterol synthesis. Finally, we showed that the re-establishment of proper levels of the NRG1 type III/ERBB2/3 pathway using niacin treatment reduces myelin outfoldings in nerves of CMT4H mice. Overall, our work reveals a new role of FRABIN in the regulation of NRG1 type III/ERBB2/3 NRG1signalling and myelination and opens future therapeutic strategies based on the modulation of the NRG1 type III/ERBB2/3 pathway to reduce CMT4H pathology and more generally other demyelinating types of CMT disease.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Camundongos , Doença de Charcot-Marie-Tooth/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos Knockout , Mutação , Neuregulina-1/metabolismo , Células de Schwann , Nervo Isquiático/patologia , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
2.
Hum Mol Genet ; 28(14): 2378-2394, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31090908

RESUMO

Distal hereditary motor neuropathies (dHMNs) are a heterogeneous group of diseases, resembling Charcot-Marie-Tooth syndromes, but characterized by an exclusive involvement of the motor part of the peripheral nervous system. Here, we describe two new compound heterozygous mutations in VRK1, the vaccinia-related kinase 1 gene, in two siblings from a Lebanese family, affected with dHMN associated with upper motor neurons (MNs) signs. The mutations lead to severely reduced levels of VRK1 by impairing its stability, and to a shift of nuclear VRK1 to cytoplasm. Depletion of VRK1 from the nucleus alters the dynamics of coilin, a phosphorylation target of VRK1, by reducing its stability through increased proteasomal degradation. In human-induced pluripotent stem cell-derived MNs from patients, we demonstrate that this drop in VRK1 levels leads to Cajal bodies (CBs) disassembly and to defects in neurite outgrowth and branching. Mutations in VRK1 have been previously reported in several neurological diseases affecting lower or both upper and lower MNs. Here, we describe a new phenotype linked to VRK1 mutations, presenting as a classical slowly progressive motor neuropathy, beginning in the second decade of life, with associated upper MN signs. We provide, for the first time, evidence for a role of VRK1 in regulating CB assembly in MNs. The observed MN defects are consistent with a length dependent axonopathy affecting lower and upper MNs, and we propose that diseases due to mutations in VRK1 should be grouped under a unique entity named `VRK1-related motor neuron disease'.


Assuntos
Corpos Enovelados/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença dos Neurônios Motores/metabolismo , Neurônios Motores/citologia , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Adulto , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Mutação , Fenótipo , Inibidores de Proteassoma/farmacologia , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Sequenciamento do Exoma
3.
Hum Mutat ; 36(4): 443-53, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25615407

RESUMO

Facioscapulohumeralmuscular dystrophy (FSHD) is linked to copy-number reduction (N < 10) of the 4q D4Z4 subtelomeric array, in association with DUX4-permissive haplotypes. This main form is indicated as FSHD1. FSHD-like phenotypes may also appear in the absence of D4Z4 copy-number reduction. Variants of the SMCHD1 gene have been reported to associate with D4Z4 hypomethylation in DUX4-compatible haplotypes, thus defining FSHD2. Recently, mice carrying a muscle-specific knock-out of the protocadherin gene Fat1 or its constitutive hypomorphic allele were shown to develop muscular and nonmuscular defects mimicking human FSHD. Here, we report FAT1 variants in a group of patients presenting with neuromuscular symptoms reminiscent of FSHD. The patients do not carry D4Z4 copy-number reduction, 4q hypomethylation, or SMCHD1 variants. However, abnormal splicing of the FAT1 transcript is predicted for all identified variants. To determine their pathogenicity, we elaborated a minigene approach coupled to an antisense oligonucleotide (AON) assay. In vitro, four out of five selected variants induced partial or complete alteration of splicing by creating new splice sites or modifying splicing regulators. AONs confirmed these effects. Altered transcripts may affect FAT1 protein interactions or stability. Altogether, our data suggest that defective FAT1 is associated with an FSHD-like phenotype.


Assuntos
Caderinas/genética , Cromossomos Humanos Par 4 , Variação Genética , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/genética , Fenótipo , Adolescente , Adulto , Idoso , Alelos , Processamento Alternativo , Criança , Pré-Escolar , Metilação de DNA , Éxons , Expressão Gênica , Genes Reporter , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Adulto Jovem
4.
Hum Mutat ; 36(11): 1021-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26123727

RESUMO

Infantile-onset cerebellar atrophy (CA) is a clinically and genetically heterogeneous trait. Galloway-Mowat syndrome (GMS) is a rare autosomal recessive disease, characterized by microcephaly with brain anomalies including CA in some cases, intellectual disability, and early-infantile-onset nephrotic syndrome. Very recently, WDR73 deficiency was identified as the cause of GMS in five individuals. To evaluate the role of WDR73 mutations as a cause of GMS and other forms of syndromic CA, we performed Sanger or exome sequencing in 51 unrelated patients with CA and variable brain anomalies and in 40 unrelated patients with a diagnosis of GMS. We identified 10 patients from three CA and from two GMS families with WDR73 mutations including the original family described with CA, mental retardation, optic atrophy, and skin abnormalities (CAMOS). There were five novel mutations, of which two were truncating and three were missense mutations affecting highly conserved residues. Individuals carrying homozygous WDR73 mutations mainly presented with a pattern of neurological and neuroimaging findings as well as intellectual disability, while kidney involvement was variable. We document postnatal onset of CA, a retinopathy, basal ganglia degeneration, and short stature as novel features of WDR73-related disease, and define WDR73-related disease as a new entity of infantile neurodegeneration.


Assuntos
Glomerulonefrite/genética , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Mutação , Nefrose/genética , Proteínas/genética , Adolescente , Adulto , Sequência de Aminoácidos , Biópsia , Encéfalo/anormalidades , Encéfalo/patologia , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Glomerulonefrite/diagnóstico , Transtornos Heredodegenerativos do Sistema Nervoso/diagnóstico , Hérnia Hiatal/diagnóstico , Hérnia Hiatal/genética , Humanos , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Dados de Sequência Molecular , Nefrose/diagnóstico , Neuroimagem , Linhagem , Fenótipo , Proteínas/química , Alinhamento de Sequência , Adulto Jovem
5.
Ann Hum Genet ; 77(4): 336-43, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23550889

RESUMO

Charcot-Marie-Tooth (CMT) disease constitutes a clinically and genetically heterogeneous group of hereditary neuropathies characterized by progressive muscular and sensory loss in the distal extremities with chronic distal weakness, deformation of the feet, and loss of deep tendon reflexes. CMT4H is an autosomal recessive demyelinating subtype of CMT, due to mutations in FGD4/FRABIN, for which nine mutations are described to date. In this study, we describe three patients from a consanguineous Tunisian family, presenting with severe, early onset, slowly progressive, autosomal recessive demyelinating CMT, complicated by mild to severe kyphoscoliosis, consistent with CMT4H. In these patients, we report the identification of a novel homozygous frameshift mutation in FGD4: c.514_515insG; p.Ala172Glyfs*27. Our study reports the first mutation identified in FGD4 in Tunisian patients affected with CMT. It further confirms the important clinical heterogeneity observed in patients with mutations in FGD4 and the lack of phenotype/genotype correlations in CMT4H. Our results suggest that FGD4 should be screened in other early-onset CMT subtypes, regardless of the severity of the phenotype, and particularly in patients of consanguineous descent. In Tunisians, as in other populations with high consanguinity rates, screening of genes responsible for rare autosomal recessive CMT subtypes should be prioritized.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Consanguinidade , Proteínas dos Microfilamentos/genética , Mutação , Adolescente , Biópsia , Doença de Charcot-Marie-Tooth/diagnóstico , Criança , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Fibras Nervosas Mielinizadas/patologia , Linhagem , Fenótipo , Tunísia , Adulto Jovem
6.
J Peripher Nerv Syst ; 17(2): 141-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22734899

RESUMO

By sequencing of the FGD4 coding sequence in a cohort of 101 patients affected by autosomal recessive demyelinating Charcot-Marie-Tooth disease (CMT), we have identified two novel missense mutations in FGD4 in two patients from consanguineous descent: p.Arg442His in an Algerian patient and p.Met566Ile in a Lebanese girl. The patients present early onset, slowly progressive CMT, with drastic reduction of nerve conduction velocities. These mutations are the second and third missense mutations characterized in FGD4. They are likely to lead to conformational changes in the PH1 and FYVE domains.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteínas dos Microfilamentos/genética , Mutação de Sentido Incorreto , Adolescente , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Linhagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Mol Syndromol ; 12(6): 342-350, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34899143

RESUMO

We report on 2 cousins, a girl and a boy, born to first-cousin Lebanese parents with Hamamy syndrome, exhibiting developmental delay, intellectual disability, severe telecanthus, abnormal ears, dentinogenesis imperfecta, and bone fragility. Whole-exome sequencing studies performed on the 2 affected individuals and one obligate carrier revealed the presence of a homozygous c.503G>A (p.Arg168His) missense mutation in IRX5 in both sibs, not reported in any other family. Review of the literature and differential diagnoses are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA