Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Signal ; 113: 110963, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931692

RESUMO

Following wounding, endogenously secreted TGFßs drive resident and bone marrow-derived cells to convert into α-smooth actin (SMA)-rich, contractile myofibroblasts. The TGFß effect is initiated by the phosphorylation of SMADs 2 and 3 (SMAD2/3). This event has been referred to as the canonical response to TGFß. TGFß also elicits other responses viewed as parallel events not directly connected to the SMAD activation, and thus referred to as noncanonical. A recognized response is the phosphorylation of the -activated kinase (TAK1/MAP3K), an upstream component of the mitogen-activated protein kinase (MAPK) cascade. We have now examined the relationship between these two effects of TGFß1 at their earliest stages. The bulk of the studies were carried out with primary fibroblasts derived from the human cornea. The results' widespread relevance was confirmed in critical experiments with dermal-, and Tenon's capsule-derived fibroblasts. Cells were treated with kinase inhibitors or targeting siRNAs followed by induction by 2 ng/ml TGFß1, and/or 10 ng/ml TNF-α. Cells were collected after 1 to 30 min for Western blot analysis and assayed for the accumulation of phosphorylated TAK1, ASK1, JNK1/2, p38, HPS27, MELK, SMAD2/3, and GAPDH. The effect of the kinase inhibitors on α-SMA expression and α-SMA stress fiber organization was also tested. For the immediate response to TGFß1 we found that a) activation of the MAPK pathway was completed within 1 min after the addition of TGFß1; b) phosphorylation of JNK1/2 was fully dependent on TAK1 and ASK1 activity, c) phosphorylation of MELK was fully dependent on JNK1/2 activity; d) phosphorylation of ASK1 depends on MELK activity, indicating the existence of an ASK1-MELK positive activation feedback loop; e) phosphorylation of SMAD2/3 started only after a 5 min period and reached a nadir after 10-15 min, f) the latter phosphorylation was fully blocked by inhibition of TAK1, ASK1, JNK1/2, and MELK, and siRNA-driven MELK downregulation; g) the inhibitors equally blocked the α-SMA protein expression, stress fiber development, and cell morphology changes at 72 h. These results demonstrate that the activation of the canonical pathway is fully subordinate to the activity of the MAPK pathway, challenging the concept of canonical and noncanonical TGFß pathways and that SMAD2/3 activation is mediated by MELK, a kinase not previously associated with rapid pharmacological responses.


Assuntos
Zíper de Leucina , Miofibroblastos , Humanos , Fosforilação , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Actinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Smad2/metabolismo
2.
Eur J Cell Biol ; 102(4): 151347, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37562219

RESUMO

The differentiation of fibroblasts into pathological myofibroblasts during wound healing is characterized by increased cell surface expression of αv-integrins. Our previous studies found that the deubiquitinase (DUB) USP10 removes ubiquitin from αv-integrins, leading to cell surface integrin accumulation, subsequent TGFß1 activation, and pathological myofibroblast differentiation. In this study, a yeast two-hybrid screen revealed a novel binding partner for USP10, the formin, DAAM1. We found that DAAM1 binds to and inhibits USP10's DUB activity through the FH2 domain of DAAM1 independent of its actin functions. The USP10/DAAM1 interaction was also supported by proximity ligation assay (PLA) in primary human corneal fibroblasts. Treatment with TGFß1 significantly increased USP10 and DAAM1 protein expression, PLA signal, and co-localization to actin stress fibers. DAAM1 siRNA knockdown significantly reduced co-precipitation of USP10 and DAAM1 on purified actin stress fibers, and ß1- and ß5-integrin ubiquitination. This resulted in increased αv-, ß1-, and ß5-integrin total protein levels, αv-integrin recycling, and extracellular fibronectin (FN) deposition. Together, our data demonstrate that DAAM1 inhibits USP10's DUB activity on integrins subsequently regulating cell surface αv-integrin localization and FN accumulation.


Assuntos
Integrinas , Humanos , Actinas/metabolismo , Enzimas Desubiquitinantes/metabolismo , Forminas/metabolismo , Integrinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Cicatrização
3.
Invest Ophthalmol Vis Sci ; 62(13): 15, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34665194

RESUMO

Purpose: Integrins play a central role in myofibroblast pathological adhesion, over-contraction, and TGFß activation. Previously, we demonstrated that after corneal wounding, αv integrins are protected from intracellular degradation by upregulation of the deubiquitinase USP10, leading to cell-surface integrin accumulation. Because integrins bind to and internalize extracellular matrix (ECM), we tested whether extracellular fibronectin (FN) accumulation can result from an increase in integrin and matrix recycling in primary human corneal fibroblasts (HCFs). Methods: Primary HCFs were isolated from cadaver eyes. HCFs were transfected with either USP10 cDNA or control cDNA by nucleofection. Internalized FN was quantified with a FN ELISA. Recycled extracellular integrin and FN were detected with streptavidin-488 by live cell confocal microscopy (Zeiss LSM 780). Endogenous FN extra domain A was detected by immunocytochemistry. Cell size and removal of FN from the cell surface was determined by flow cytometry. Results: USP10 overexpression increased α5ß1 (1.9-fold; P < 0.001) and αv (1.7-fold; P < 0.05) integrin recycling, with a concomitant increase in biotinylated FN internalization (2.1-fold; P < 0.05) and recycling over 4 days (1.7-2.2-fold; P < 0.05). The dependence of FN recycling on integrins was demonstrated by α5ß1 and αv integrin blocking antibodies, which, compared with control IgG, decreased biotinylated FN recycling (62% and 84%, respectively; P < 0.05). Overall, we established that extracellular FN was composed of approximately 1/3 recycled biotinylated FN and 2/3 endogenously secreted FN. Conclusions: Our data suggest that reduced integrin degradation with a subsequent increase in integrin/FN recycling after wounding may be a newly identified mechanism for the characteristic accumulation of ECM in corneal scar tissue.


Assuntos
Córnea/metabolismo , Fibronectinas/metabolismo , Ubiquitina Tiolesterase/biossíntese , Adesão Celular , Membrana Celular/metabolismo , Células Cultivadas , Córnea/citologia , Ensaio de Imunoadsorção Enzimática , Fibroblastos/metabolismo , Citometria de Fluxo , Humanos , Transdução de Sinais
4.
Mol Ther Nucleic Acids ; 21: 1029-1043, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32829179

RESUMO

Ocular scarring after surgery, trauma, or infection leads to vision loss. The transparent cornea is an excellent model system to test anti-scarring therapies. Cholesterol-conjugated fully modified asymmetric small interfering RNAs (siRNAs) (self-deliverable siRNAs [sdRNAs]) are a novel modality for in vivo gene knockdown, transfecting cells and tissues without any additional formulations. Myofibroblasts are a main contributor to scarring and fibrosis. αv integrins play a central role in myofibroblast pathological adhesion, overcontraction, and transforming growth factor ß (TGF-ß) activation. Previously, we demonstrated that αv integrins are protected from intracellular degradation after wounding by upregulation of the deubiquitinase (DUB) ubiquitin-specific protease 10 (USP10), leading to integrin cell surface accumulation. In this study, we tested whether knockdown of USP10 with a USP10-targeting sdRNA (termed US09) will reduce scarring after wounding a rabbit cornea in vivo. The wounded corneal stroma was treated once with US09 or non-targeting control (NTC) sdRNA. At 6 weeks US09 treatment resulted in faster wound closure, limited scarring, and suppression of fibrotic markers and immune response. Specifically, fibronectin-extra domain A (EDA), collagen III, and a-smooth muscle actin (p < 0.05), CD45+ cell infiltration (p < 0.01), and apoptosis at 24 (p < 0.01) and 48 h (p < 0.05) were reduced post-wounding. Corneal thickness and cell proliferation were restored to unwounded parameters. Targeting the DUB, USP10 is a novel strategy to reduce scarring. This study indicates that ubiquitin-mediated pathways should be considered in the pathogenesis of fibrotic healing.

5.
J Vis Exp ; (144)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30829330

RESUMO

The cornea has been used extensively as a model system to study wound healing. The ability to generate and utilize primary mammalian cells in two dimensional (2D) and three dimensional (3D) culture has generated a wealth of information not only about corneal biology but also about wound healing, myofibroblast biology, and scarring in general. The goal of the protocol is an assay system for quantifying myofibroblast development, which characterizes scarring. We demonstrate a corneal organ culture ex vivo model using pig eyes. In this anterior keratectomy wound, corneas still in the globe are wounded with a circular blade called a trephine. A plug of approximately 1/3 of the anterior cornea is removed including the epithelium, the basement membrane, and the anterior part of the stroma. After wounding, corneas are cut from the globe, mounted on a collagen/agar base, and cultured for two weeks in supplemented-serum free medium with stabilized vitamin C to augment cell proliferation and extracellular matrix secretion by resident fibroblasts. Activation of myofibroblasts in the anterior stroma is evident in the healed cornea. This model can be used to assay wound closure, the development of myofibroblasts and fibrotic markers, and for toxicology studies. In addition, the effects of small molecule inhibitors as well as lipid-mediated siRNA transfection for gene knockdown can be tested in this system.


Assuntos
Córnea/fisiopatologia , Técnicas de Cultura de Órgãos/métodos , Animais , Modelos Animais de Doenças , Suínos , Transfecção
6.
PM R ; 10(6): 671-674, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29291381

RESUMO

Traumatic injury and subsequent residual cosmetic deformity are subject of intense scrutiny for their effects on objective health measures assessing patient morbidity and mortality. Although these remain principal concerns of all members of the treatment team, of less immediate yet lasting importance to the patient are the social costs of such disfigurement. Subjective feelings of unease and embarrassment can hinder social reintegration and encourage deteriorating psychosocial health. The following presents a case of one such individual who sustained traumatic brain injury and associated pneumocephalus and osteomyelitis requiring surgical debridement with bifrontal craniectomy and lobotomy. Postoperative management was cosmetically improved by the application of a custom-fabricated, 3-dimensionally printed helmet used in place of generic over-the-counter hardware, and the associated improvement reported in patient satisfaction is reported. LEVEL OF EVIDENCE: V.


Assuntos
Lesões Encefálicas Traumáticas/reabilitação , Craniotomia/reabilitação , Dispositivos de Proteção da Cabeça , Impressão Tridimensional , Socialização , Adulto , Lesões Encefálicas Traumáticas/psicologia , Desenho de Equipamento , Humanos , Masculino , Estudos Retrospectivos , Autoavaliação (Psicologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA