Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 59(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38003989

RESUMO

Background and Objectives: Nandrolone decanoate (ND) is the most widely used among the anabolic androgenic steroids (AAS), synthetic substances derived from testosterone, to improve muscular and health gains associated with exercises. The AAS leads to physical performance enhancement and presents anti-aging properties, but its abuse is associated with several adverse effects. Supraphysiological doses of AAS with or without physical exercise can cause morphological and functional alterations in neuromuscular interactions. This study aims to investigate the effects of ND supraphysiological doses in neuromuscular interactions, focusing on the soleus muscle and its neuromuscular junctions (NMJs) in rats, associated or not with physical exercise. Materials and Methods: Forty male Sprague Dawley rats were divided into four groups: sedentary and exercised groups, with or without ND at the dose of 10 mg/kg/week. The animals were treated for eight weeks, with intramuscular injections, and the soleus muscle was collected for morphological analyses. Results: The supraphysiological doses of ND in the sedentary group caused muscle degeneration, evidenced by splitting fibers, clusters of small fibers, irregular myofibrils, altered sarcomeres, an increase in collagen deposition and in the number of type I muscle fibers (slow-twitch) and central nuclei, as well as a decrease in fibers with peripheral nuclei. On the other hand, in the ND exercise group, there was an increase in the NMJs diameter with scattering of its acetylcholine receptors, although no major morphological changes were found in the skeletal muscle. Thus, the alterations caused by ND in sedentary rats were partially reversed by physical exercise. Conclusions: The supraphysiological ND exposure in the sedentary rats promoted an increase in muscle oxidative pattern and adverse morphological alterations in skeletal muscle, resulting from damage or post-injury regeneration. In the ND-exercised rats, no major morphological changes were found. Thus, the physical exercise partially reversed the alterations caused by ND in sedentary rats.


Assuntos
Anabolizantes , Nandrolona , Ratos , Masculino , Animais , Decanoato de Nandrolona/farmacologia , Nandrolona/efeitos adversos , Anabolizantes/efeitos adversos , Ratos Wistar , Ratos Sprague-Dawley , Músculo Esquelético/fisiologia , Junção Neuromuscular
2.
Int J Exp Pathol ; 98(2): 109-116, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28543723

RESUMO

Protein restriction during gestation can alter the skeletal muscle phenotype of offspring; however, little is known with regard to whether this also affects the neuromuscular junction (NMJ), as muscle phenotype maintenance depends upon NMJ functional integrity. This study aimed to evaluate the effects of a low protein (6%) intake by dams throughout gestation on male offspring NMJ morphology and nicotinic acetylcholine receptor (nAChR) α1, γ and ε subunit expression in the soleus (SOL) and extensor digitorum longus (EDL) muscles. Four groups of male Wistar offspring rats were studied. The offspring of dams fed low-protein (6% protein, LP) and normal protein (17% protein, NP) diets were evaluated at 30 and 120 days of age, and the SOL and EDL muscles were collected for analysis. Morphological studies using transmission electron microscopy revealed that only SOL NMJs were affected in 30-day-old offspring in the LP group compared with the NP group. SOL NMJs exhibited fewer synaptic folds, the postsynaptic membranes were smooth and myelin figures were also frequently observed in the terminal axons. With regard to the expression of mRNAs encoding nAChR subunits, only 30-day-old LP offspring EDL muscles exhibited reduced α, γ and ε subunit expression compared with the NP group. In conclusion, our results demonstrate that a low-protein diet (6%) imposed throughout pregnancy impairs the expression of mRNAs encoding the nAChR α, γ and ε subunits in EDL NMJs and promotes morphological changes in SOL NMJs of 30-day-old offspring, indicating specific differences among muscle types following long-term maternal protein restriction.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Junção Neuromuscular/ultraestrutura , Receptores Nicotínicos/genética , Animais , Feminino , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Junção Neuromuscular/metabolismo , Fenótipo , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
3.
Sci Rep ; 9(1): 6366, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31019213

RESUMO

Knee osteoarthritis (KOA) is associated with muscle weakness, but it is unclear which structures are involved in the muscle changes. This study assessed morphological alterations and the expression of genes and proteins linked to muscular atrophy and neuromuscular junctions (NMJs) in KOA, induced by anterior cruciate ligament transection (ACLT) in rats. Two groups of rats were assessed: control (without intervention) and KOA (ACLT surgery in the right knee). After 8 weeks, quadriceps, tibialis anterior (TA) and gastrocnemius muscles were analyzed (area of muscle fibers, NMJ, gene and protein expression). KOA group showed atrophy in quadriceps (15.7%) and TA (33%), with an increase in atrogin-1 and muscle RING-finger protein-1 (MuRF-1). KOA group showed quadriceps NMJ remodeling (reduction area and perimeter) and decrease in NMJ diameter in TA muscle. The expression of nicotinic acetylcholine receptor (nAChR) γ-nAChR increased and that of α-nAChR and muscle specific tyrosine kinase (MuSK) declined in the quadriceps, with a decrease in ε-nAChR in TA. MuRF-1 protein expression increased in quadriceps and TA, with no changes in neural cell adhesion molecule (NCAM). In conclusion, ACLT-induced KOA promotes NMJ remodeling and atrophy in quadriceps and TA muscles, associated with inflammatory signs and changes in muscle gene and protein expression.


Assuntos
Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Junção Neuromuscular/metabolismo , Osteoartrite do Joelho/genética , Músculo Quadríceps/metabolismo , Animais , Ligamento Cruzado Anterior/fisiopatologia , Ligamento Cruzado Anterior/cirurgia , Expressão Gênica , Proteínas Musculares/metabolismo , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Debilidade Muscular/fisiopatologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Junção Neuromuscular/fisiopatologia , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/fisiopatologia , Músculo Quadríceps/fisiopatologia , Ratos Wistar , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA